- Table of contents
- Meeting 2015 09 04
Meeting 2015 09 04¶
Generic settings¶
/N02/det/trackMaxSteps 1000000000
/N02/det/trackMaxLen 10 km
/gun/energy 10.9181415106 MeV
/N02/prec/setDeltaOne 1.0e-2 mm
/N02/prec/setDeltaInt 1.0e-5 mm
/N02/prec/setEpsilonMin 1.0e-3
/N02/prec/setEpsilonMax 1.0e-3
/N02/prec/setDeltaChord 0.25 mm
- All measured times correspond to executions (both of G4 or PD) which don't produce output at all (or produce a minimum logging).
- MSE is the Mean Squared Error of the position
- MSE = 1/N * sum_{i=1}^{N} (G4x_i - ANx_i)^2 + (G4y_i - ANy_i)^2
- N = Number of output points
- r_Error = sqrt(MSE)
- max(X_Error) is the maximum of all the absolute errors in x, i.e. max(abs(G4x_i - ANx_i))
Experiment 1 - Vary epsilon in G4¶
(see August 21 meeting)
/N02/det/stepMax 20. mm (i.e., stepMax = 20mm)
epsilonMax = epsilonMin = epsilon
The mean square error doesn't seem to vary.
The X_Error, however, keeps growing with distance.
epsilon | Simulation Time | RHS evaluation steps | MSE [mm^2] | r_Error [mm] | Max(X_Error) [mm] |
---|---|---|---|---|---|
1.0e-3 | 0m13.725s | 16500010 | 291.21 | 17.06 | 30.54 |
1.0e-4 | 0m13.725s | 16500010 | 291.21 | 17.06 | 30.54 |
1.0e-5 | 0m13.725s | 16500010 | 291.21 | 17.06 | 30.54 |
1.0e-6 | 0m21.815s | 38500010 | 294.09 | 17.14 | 30.68 |
1.0e-7 | 0m27.980s | 60500010 | 294.22 | 17.15 | 30.69 |
1.0e-8 | 0m41.054s | 104499999 | 294.22 | 17.15 | 30.69 |
1.0e-9 | 0m55.830s | 159500010 | 294.22 | 17.15 | 30.69 |
1.0e-10 | 1m25.948s | 269499999 | 294.22 | 17.15 | 30.69 |
1.0e-11 | 2m17.996s | 456500010 | 294.22 | 17.15 | 30.69 |
1.0e-12 | 3m50.224s | 786518324 | 294.22 | 17.15 | 30.69 |
A few plots for different values of epsilon:
The 3 plots look exactly the same!
The output for those epsilon values is different, though.
Experiment 2 - Vary stepMax in G4¶
/N02/prec/setEpsilonMin 1.0e-3 (i.e, epsilon = 1.0e-3)
/N02/prec/setEpsilonMax 1.0e-3
Errors were measured for first 2 km (the file size for 10 km in the case of stepMax=0.2mm was too big)
stepMax [mm] | Simulation Time | RHS evaluation steps | MSE [mm^2] | r_Error [mm] | Max(X_Error) [mm] |
---|---|---|---|---|---|
0.2 | 13m34.816s | 550000011 | 12.12 | 3.48 | 6.16 |
1 | 2m51.026s | 110000000 | 12.11 | 3.48 | 6.15 |
2 | 1m28.192s | 55000000 | 12.11 | 3.48 | 6.15 |
5 | 0m33.121s | 22000000 | 12.11 | 3.48 | 6.15 |
10 | 0m21.907s | 22000010 | 12.08 | 3.47 | 6.14 |
20 | 0m13.797s | 16500010 | 11.98 | 3.46 | 6.12 |
50 | 0m8.319s | 13200010 | 11.71 | 3.42 | 6.03 |
100 | 0m7.179s | 13200020 | 11.25 | 3.35 | 5.89 |
150 | 0m6.848s | 13200020 | 10.79 | 3.28 | 5.76 |
200 | 0m6.382s | 12650020 | 10.35 | 3.21 | 5.65 |
Although all the errors look similar, there is a clear and counterintuitive tendency for the error to become smaller as stepMax is increased.
A few plots for different values of stepMax:
Experiment 3 - Vary DeltaQ in PD¶
Simulated with QSS3 method
DeltaQmin = DeltaQ * 1e-3
Several values of the table were left blank deliberately as they weren't calculated yet
DeltaQ | Simulation Time | Equivalente in PD to RHS eval steps | MSE [mm^2] | r_Error [mm] | Max(X_Error) [mm] |
---|---|---|---|---|---|
1.0e-1 | 0.41s | 5.60e5 | |||
1.0e-2 | 0.42s | 6.40e5 | |||
1.0e-3 | 1.33s | 2.40e6 | 704.43 | 26.54 | 38.08 |
1.0e-4 | 8.89s | 1.42e7 | 568.32 | 23.83 | 37.89 |
1.0e-5 | 16.3s | 3.08e7 | 86.89 | 9.32 | 18.41 |
1.0e-6 | 35.6s | 6.64e7 | 56.79 | 7.54 | 14.80 |
1.0e-7 | 77.6s | 1.43e8 | 57.45 | 7.58 | 15.03 |
1.0e-8 | 165s | 3.09e8 | |||
1.0e-9 | 354s | 6.64e8 | |||
1.0e-10 | 740s | 1.43e9 | |||
1.0e-11 | 1630s | 3.09e9 | |||
1.0e-12 |
A few plots for different values of DeltaQ:
The last two plots look exactly the same