The LArSoft architecture (draft)

Gianluca Petrillo!, David Adams?, Eric Church?®, Amir Farbin?,
Herbert Greenlee!, Thomas Junk!, Wesley Ketchum!?,
James Kowalkowski!, Marc Paterno', Ruth Pordes!, Brian Rebel®,
Saba Sehrish!, Erica Snider!, Tracy Usher®, and Tingjun Yang!

Fermi National Accelerator Laboratory, U.S.A.
2Brookhaven National Laboratory, U.S.A.
3Pacific Northwest National Laboratory, U.S.A.
4University of Texas at Arlington, U.S.A.
Stanford Linear Accelerator Laboratory, U.S.A.

April 5, 2016

Contents
1__Introductionl 2
PUrpose] 2
1.2 COPE| . . o e e e e e e e e e 2
s [2_Overviewl 2
I3 Logical view: components| 3
3.1 Internal components| L. 6
4__Process view: workflows| 7
4.1__Simulation workflowl oo 0L 7
10 4.2__Reconstruction workflowl 10
4.3 Analysis workflow| L oL 13
|5 Deployment view: development and extensibility| 13
5.1 evelopment environment|o oL 14
................................ 15
15 5.3 ata products|. 15
D4 Usercodel 16
.5 External ibraries o o o 19
6 Physical view: repositories and packages| 20
6.1 Local LArSoft mnstallationl 21

25

30

35

40

45

50

1 Introduction

1.1 Purpose

The LArSoft toolkit enables simulation, reconstruction and physics analysis of
data from any detection system based on Liquid Argon TPCs. Its common
tools and algorithms render the development and analysis process more uni-
form across the Experiments, and facilitate direct sharing of code and expe-
rience between Experiments. LArSoft is extensible to accommodate evolving
Experiments’ needs and adoption by new Experiments.

This document describes the current architecture of LArSoft toolkit. The
architecture was developed according to, and therefore reflects, the consensus
of LArSoft partners, including the adopting Experiments.

The document provides a reference for the reader interested in learning the
general structure of LArSoft, its functional areas and interactions with the ex-
ecution environment. It also offers guidelines for the contributor aiming to de-
velop new algorithms within LArSoft or to use it together with external tools.

1.2 Scope

This document provides an overview of the architecture of LArSoft toolkit,
including its relationship with the surrounding software environment. The in-
ternal flow of the different subsystems is also described. The document intends
to capture and convey the significant architectural decisions, which reflect into
the current implementation or drive its development.
Some commonly used LArSoft elements are mentioned to exemplify flows and
connections, but this is no attempt to exhaustively describe each, or any, of the
single elements.

This document describes the architecture of LArSoft to date. At the time
of writing, LArSoft v05_00_00 is in Release Candidate 2.

2 Overview

The LArSoft toolkit aims to offer a solution for the typical data analysis sce-
narios of an experiment based on a Liquid Argon TPC detector:

e generation of physics events

e simulation of physics processes in the detectors

e simulation of detector readout response

e reconstruction of low and high level physics objects
e analysis and presentation of collected data

e graphical display of physics events

55

60

65

70

75

80

experiment-specific
software

LArSoft
toolkit

development & run-time
environment

Figure 1: Relationship of LArSoft with other software categories.

As an example, suppose a scientist may want to develop a new clustering
algorithm optimized for a certain type of physics events. LArSoft offers inter-
face to generators to produce either simplified physics events or more realistic
ones that include, for example, cosmic radiation. It also provides the simulation
of those events in the specific experiment detector. If the target processes are
common enough, the experiment might have already executed these steps on
large scale, also using LArSoft, and provided the necessary input. The scientist
is then presented with standard interfaces to access geometry and detector in-
formation, and standard data structures to start from, including hits on single
wires suitable as starting point for a clustering algorithm, and to store the re-
sults into. She (or he) can use the standard framework environment to write an
algorithm class and its framework module, compile it and test it immediately on
simulated data. The clusters, saved in a standard LArSoft data structure, can
be immediately visualized in a event display, and adjust the code as needed for
the next development iteration. Depending on the algorithm, the time between
a code change and the visualization of its effect may take less than one minute.
Finally, replacing the input with actual detector data, that uses the same format
as the simulation, she will immediately see the performance in the real case.

As a different example, a scientist may want to compare two different algo-
rithms analyzing reconstructed tracks. After the tracks are produced, running
the track reconstruction algorithm on either simulated or real data, she will
write one or more analysis algorithms and their framework modules to produce
the necessary plots.

3 Logical view: components

To provide the best solutions for LAr TPC simulation, reconstruction and anal-
ysis of data, LArSoft interacts with other software aimed to provide developers
with tools commonly in use by the broader physics community, standardize code
development, and allow for experiment-specific needs (fig. .

85

90

95

100

LArSoft
toolkit

Figure 2: Relationship between LArSoft and third-party libraries.

Physics developers typically rely on copious libraries providing general or
physics-specific services (fig. . LArSoft already offers:

access to a framework, art [I], providing essential functionalities including
an event data model, an event loop, workflow definition and control, plug-
in of code, distribution and tracking of job configuration, serialization of
the results, and more

proxy-, web-based access to data bases via libwda [2], or direct access to
PostgreSQL databased]

physics libraries, as CERN CLHEP [3] and nutools [4]

event generation packages: GENIE [5], CRY [6], HEPEVT [7] files
detector simulation libraries (to date, only GEANT4 [§])

pattern recognition libraries, like pandora

data analysis tools, like CERN ROOT [9]

visualization aids, also with CERN ROOT and nutools

Additional libraries are expected to be added in the future.

LArSoft is designed to accommodate specific needs from the experiments.
Experiments directly contribute LArSoft content when it’s suitable, i.e. when
of general utility and experiment-agnostic. In the other cases, experiments
interface to LArSoft though many channels (fig. :

I Experience has shown that direct database does not scale well with the number of accessing

jobs.

105

110

115

120

data
acquisition
detector
conditions

algorithms LArSoft
&) toolkit

detector
geometry

Figure 3: Relationship between LArSoft and experiment-specific software.

job
configuration

e detector geometry is provided in GDML or ROOT format

e detector conditions can be learned via static configuration or from exper-
iment databases

e detector data is acquired by special art modules or by standard art files
(e.g., produced by artDAQ) containing standard LArSoft data products

e specialized services and algorithms can be plugged in using the art frame-
work

e job configuration, controlling the data to be processed and the sequence
of actions to perform, is specified in FHiCL language [10]

e workflows are defined by the experiment, typically by using custom scripts
that include the execution of LArSoft main program, lar

Experiments have control over the format of their databases. LArSoft provides
abstract interfaces to retrieve the information needed by its algorithms, and at
least a simple reference implementation, typically reading the information from
configuration or from a local data file. The Experiments can implement these
interfaces to access their databases with their specific format.

LArSoft has a large number of interdependent components, and provides the
users tools to facilitate code development (fig. . LArSoft code is organized in
repositories that can be compiled when needed. The building system ensures
consistent builds among all supported platforms. The UPS [I1] distribution sys-
tem ensures that the same consistency is preserved at run time. Infrastructure

125

130

135

140

145

[testing] [packaging]

LArSoft
toolkit
[repositories] [build system]

Figure 4: Relationship between LArSoft and development software categories.

for automatic execution of user tests is also provided, together with a growing
number of tests exercising parts of LArSoft tools.

3.1 Internal components

Most LArSoft components can be grouped into some broad functional categories.
Some of them are well established, while others are being developed now or have
been just designed. The following list touches the main ones, without being
exhaustive:

detector information

detector geometry description

e detector information services: liquid argon and detector properties,
readout timings and settings, readout channel quality

calibration services: readout channel pedestals

map of residual electric charge in TPC volume

persistent data structures (“data products”), grouped in

raw data, unprocessed from the detector

e simulation from event generator (“truth”) and detector simulation
e reconstruction of detector and physics objects

e optical data, raw or processed, from the optical detectors

e analysis results of reconstructed objects
operations

e physics event generation
e detector simulation: TPC and optical detectors

e readout simulation: template modules for TPC and optical detectors

150

155

160

165

170

175

180

e simulation of optical triggers
e calibration template modules

e object reconstruction: 1D (TPC wire hits, optical hits), 2D (TPC hit
clusters), 3D (tracks, showers, vertices) and time (optical flashes)

e TPC hit simulation and correlation between reconstructed objects
and generated particles

e energy and momentum reconstruction (“calorimetry”)
e particle identification

e global event reconstruction
programming utilities and framework interface

e physical constants

e helpers for common framework usage patterns (e.g., creation of as-
sociations between data products)

graphical display of generated and reconstructed objects (“event display”)
example of analysis module

A more detailed illustration of the relations between some of the simulation and
reconstruction components and the environment will be given respectively in

sections 1] and (4.2

4 Process view: workflows

LArSoft tools can be sequenced and combined to define complete workflows.
The typical usage is aligned to three main types of “standard” workflows: simu-
lation, reconstruction and analysis. Simulation step is, of course, skipped when
processing real detector data. LArSoft does not directly define these processing
chains. Rather, it relies on the flexibility of art framework, that provides users
with the flexibility of choosing and arranging processing modules at will. Thus,
the Experiments define the steps of each workflow according to their needs.
Nevertheless, experience has shown that, since the same needs being shared
among Experiments, it is possible to characterize “typical” workflow chains.

4.1 Simulation workflow

The purpose of a simulation workflow is to describe a realistic response of the
detectors to a known physics event (“Monte Carlo truth” or simply “truth”).
Since the result of the simulation should be equivalent to the output of the
detectors, the same data structures represent both simulation results and data
from the detectors.

The main products of this workflow are:

()

event generator

modules
~ generated particles
(MC truth)

()

detector physics

simulation

. J/

ionization electrons,

scintillation photons

Figure 5: A typical LArSoft simulation workflow. Blocks represent operations

and ellipses represent data. All data can be saved in LArSoft format for later
use. Block colour coding follows fig.

detector readout
simulation

e data products representing the detector response (e.g. raw: :RawDigit
and raw: :OpDetWaveform)

e data products representing the simulated physics (e.g. simb::MCTruth,
simb: :MCParticle)

185 The complete simulation chain is illustrated in fig.[5] The process is typically
divided in three steps:

1. physics event generation
2. detector physics simulation
3. detector readout simulation

190 e TPC (signal on the wires)
e optical detector(s)

e “auxiliary” detectors (e.g. scintillator pads)

The physics event can be generated by an external program or library (fig. @

LArSoft can interface directly to generators that offer API, through a specific

15 driver module. Currently driver modules are offered to work with GENIE gen-

erator (neutrino interactions) and CRY (cosmic rays). LArSoft can also read

events stored in HEPEVT format. In addition, LArSoft provides built-in gen-
erators for single particles, Argon nucleus decays, and more.

The detector physics simulation includes interaction of generated particles

20 with the detector, and transportation to the readout of produced photons and

external generator
driver module

|
|
]
|
| |\ A
|
| 4
L HEPEVT interface
| module
[N J
|
|
|
|
|

generated particles
(MC truth)

LArSoft
event generator

Figure 6: Event generation workflow. Colour coding follows fig. [5| Purple lines
describe data flow. The black line represents a relation via API. The dashed
line encompasses the part of the workflow driven via LArSoft configuration.

[)
| AL
| event generator |
! modules !
| J |
|
|
|

|
1
|
() |
\l\ detector physics configuration,
simulation geometry
[optical maps

|

! |

! |

! |

[response models J\:(N :
|]

|

|

|

r
|

detector readout
-——-4"‘\ simulation
|

I ! LArSoft simulation
N 22 A -

(detector conditions)

Figure 7: Components involved in simulation and their relation. Blocks rep-
resent operations and ellipse represents data. Lines represent communication
between components: via data transfer (purple lines) and via APT (black lines).
Block colour coding follows fig. |1l The encircled area maps the simulation work-
flow illustrated in fig.

205

210

215

220

225

230

235

electrons. This part of the simulation currently relies on GEANT4 for the
interaction of particles with matter. Electron and photon transportation is im-
plemented in built-in code. To make photon transportation faster, Experiments
can fill and use maps that parametrize the exposure of each optical subdetector
as function of the scintillation position in the cryostat. Detector parameters
(e.g., the intensity of the electric field) can be acquired from the job configura-
tion or from a Experiment database.

The last step transforms the physics information, electrons and photons,
into digitized detector response, including the simulation of electronics noise
and shaping. This is typically implemented with experiment-specific code, and
separately for each sub-detector type.

4.2 Reconstruction workflow

The reconstruction phase produces standard physics objects describing the physics
event. Reconstruction delivers objects with different level of sophistication, as
for example hits describing localized charge deposition as detected on a wire,
down to a complete hierarchy of three-dimensional tracks. These objects can be
permanently stored for further analysis. Through the workflow, detector and
data acquisition parameters can be acquired from Experiment databases.

Many possible reconstruction strategies are possible. LArSoft allows them
to be applied indifferently to data produced by a real detector or simulated.
Support is planned for mixing the two types of sources together. The more
“traditional” strategy (fig.[8) proceeds through:

1. calibration of the signals, noise suppression and removal of electronics
distortions;

2. reconstruction of charge deposition independently on each TPC wire (hits);
3. definition of clusters from hits lying on the same wire plane;

4. combination of clusters from different planes in trajectories (tracks) and
particle cascades (showers);

5. identification of interaction points (vertices);

6. hierarchal connection of them into particle flow structures. Many options
are implemented in LArSoft for each.

Different algorithms can be chosen to perform each of these steps. Any ex-
ternal library that utilizes LArSoft data classes to receive inputs and deliver
results is also fully interchangeable with the algorithms implemented in LAr-
Soft. A noticeable example is the pandora pattern recognition toolkit, that
accepts LArSoft hits as input and can present its results in the form of LArSoft
clusters, tracks and particle flow objects.

This workflow is extremely simple and factorizes the process in highly inde-
pendent steps. Alternative workflows can and have been developed.

10

— Cmw>

Calibration

. Hit finding !

~——o
5 ! _Techi
)

. Cluster finding
1 —

Track
reconstruction

Particle

identification

particle ID

Figure 8: A typical LArSoft reconstruction workflow. The area within the
dashed contour highlights the physics objects reconstruction. Shapes and
colours are as in fig.

11

Vit Y
 EE— _l_(data acquisition)

calibration

_— 4(calibration data)

)

hit finding
—

. |
(configuration] | cluster finding

| —

|
(geometry) | track

reconstruction

shower

reconstruction

I
(detector conditions)

calorimetry

particle

identification

LArSoft reconstruction J

Figure 9: Components involved in a typical reconstruction workflow and their
relation. Shapes and colours are as in fig. E

12

240

245

250

255

260

265

270

275

280

Examples include a workflow derived from the one described above, the first
pass of which consists of a complete reconstruction tuned for the identifica-
tion of background objects (mostly cosmic rays), followed by elimination of the
identified background and by a second pass tuned for reconstruction of neutrino
interactions.
Other solutions include direct track reconstruction without clustering; direct
clustering from calibrated or uncalibrated channel signals by image processing
algorithms, bypassing the construction of hits; a quick, preliminary track re-
construction followed by a complete reconstruction utilizing the first result to
better direct the algorithms; inverting the order of track and vertex finding; and
more.
Any number of object collections can exist at the same time, and these alterna-
tive approaches can be executed in the same job, and their results saved in the
same file and accessed as needed.

LArSoft and art modularity supports any acyclic workflows, with any pre-
determined number of (potentially optional) steps. It does not accommodate
cyclic workflows.

4.3 Analysis workflow

Analysis workflows are the most vaguely defined, due in part to the more diverse
goals, and partly to the fact that in this relatively early stage the Experiments
have devoted most of the time to simulation and reconstruction. No prototype
analysis workflow has emerged yet.

The calibration of energy deposited in liquid argon by interacting particles
and their identification as specific types — e.g., muons, protons, etc. — (see the
end of the reconstruction workflow in fig. |8) have been considered sometimes
as part of the analysis, sometimes as part of the reconstruction. Another com-
mon analysis task is evaluation of reconstruction performances and comparison
between different algorithms and strategies.

Calibration activities, for example pedestal analysis, characterization of ar-
gon purity, mapping of the electric field, also fall in this category and they are
ideal candidates for the standardization of workflows.

5 Deployment view: development and extensi-
bility

The extensibility of LArSoft is largely based on the underlying framework, art.
The art framework processes physics event independently, executing on each of
them a sequence of modules. An event is defined by an input module. In most
Experiments it is bound to a single pulsed beam interaction with the detector,
but test beam Experiments, non-beam Experiments and non-beam analyses (e.g.
proton decay) may need to define different event boundaries. The framework
also provides a list of global services that modules can rely on. Examples of
services implemented by LArSoft include the description of detector geometry

13

285

290

295

300

305

310

and channel mapping, the set of detector configuration parameters, and access
to TPC channel quality information.

In this section we describe the development environment and then focus on
the main handles LArSoft offers developers for the sake of extensibility, including
new serializable data structures, new algorithms and the use of external libraries.

5.1 Development environment

LArSoft is designed for and supports the use of a development environment
based on:

e UNIX Product Support (UPS) for access to dependent packages
e cetbuildtools [12] as build system

e Multi-Repository Build[I3] (MRB) to coordinate build and execute soft-
ware from different repositories

e git (recommended) or SVN for version control

The following description assumes the prerequisite availability of all these tools.
LArSoft is fully supported on the following platforms:

e Scientific Linux Fermi: version 6
e Darwin: version 13 (OS X 10.9 “Maverick”) and 14 (OS X 10.10 “Yosemite”)

LArSoft typically supports the two most recent versions of these operating sys-
temsﬂ Support is also planned for the long term support release of Ubuntu
Linux (16.04 LTS).

A typical workflow starts with the set up of a working area. After the area
is created the first time, subsequent utilization of it requires just a simple set
up. LArSoft provides a script for this set up, and it is common practice for the
Experiments to provide customized ones.

The development, whether it is creation of new code or modification of ex-
isting one, follows the following workflow:

1. development-specific set up of the existing working area

2. importing the source code to be modified, if any; this code will persist in
the area

. modifications as needed

3

4. building
5. optional (and recommended) execution of a standard test suite
6

. installation for running

2 The actual supported versions depend also on the underlying support of the O.S. by
Fermilab.

14

315

320

325

330

335

340

345

350

The execution of LArSoft code including user development, as described
above, follows this workflow:

1. run-time specific set up of the existing working area
2. preparation of job configuration as needed
3. execution of the software

The execution of LArSoft code as distributed, without modification, has a sim-
pler set up that does not require a development working area.
LArSoft and the Experiments provide a vast selection of configurations ready to
run, making the second step optional. Development and execution set up can
coexist in the same environment at the same time.

LArSoft currently provides no facility to execute code remotely, including job
submission to remote clusters. The Experiments supply workflows and scripts
for this type of execution.

5.2 Testing

LArSoft development model allows multiple contributors to modify the code at
the same time. This model can create conflicts and dysfunction in the code.
Tests are instrumental to the early detection of such defects. LArSoft includes
tests at two levels, called unit tests and integration tests.

Unit tests exercise a limited part of the system, typically a single algorithm.
Ideally a unit test for an algorithm should test all the functions of that algorithm.
In practice, tests for complex algorithms tend to set up and test a few known
typical cases. Unit tests can be added at the same time the tested code is beging
developed. They are run in the development environment: as such, they are the
quickest mean to exercise newly written code.

Integration tests involve the framework and one or more processing modules.
These tests can reproduce real user scenarios, for example a part of the official
processing chain of an Experiment, and they can compare new and historical
results. LArSoft tools allow these tests to be run on demand at any time, and a
standard suite of tests is automatically and periodically run as part of LArSoft
Continuous Integration system.

5.3 Data products

LArSoft provides a basic set of data structures. Each structure is associated to
a simple concept and a set of related quantities. For example, raw: :RawDigit
describes the raw data as read from a TPC channel; recob: :Cluster describes
a set of correlated hits observed on a wire plane; anab: :Calorimetry contains
information about calibrated energy of a track. A data product is data that can
be serialized and then recovered for further processing. A data product can be:

e a data structure

15

355

360

365

370

375

380

385

e a collection of data structures
e a set of associations between data structures

LArSoft strongly recommends data structures designed for serialization to
follow some standard prescriptions:

e simple: they contain just data, and trivial logic to access it; more complex
elaborations belong to algorithms;

e concrete: they can be instantiated;
e containing data members from a restricted selection:

— fundamental C++ types (note that pointers are not fundamental);

— other types suitable themselves as data products (including collec-
tions as described below).

Limitations of the ROOT I/0O system impose restrictions on the types of allowed
data members, e.g. on the set of supported C++11 containers.
Collections of data structures also undergo some prescriptions:

e when contained as member of other data products, standard containers
(from C++ STL) are preferred, favouring fixed-size arrays and STL vec-
tors;

e when passed to the framework to be saved directly, STL vectors are
strongly recommended,;

e contained types must themselves be suitable as data products (as de-
scribed above).

Relations between data products are expressed by associations. Associations
are data products provided by art that can relate a data product, or an element
within a collection of data products, to another data product or element. Ex-
amples of use in LArSoft include associations between a reconstructed hit and
the calibrated signal it’s reconstructed from, and between a cluster and all the
hits that constitute it.

Data products have a fundamental structural role: they act as messages to be
exchanged between algorithms. As such, they are also the format in which most
of the algorithm results are saved. This allows to arbitrary split the processing
chain in multiple sequences of jobs.

5.4 User code

Algorithms constitute, together with data products, the heart of LArSoft, and
the ability for the users to add their own algorithm is central to its design. In
fact, LArSoft algorithms differ from users’ algorithms only in the consideration
that their purpose is of general interest. Indeed, most of the algorithms in

16

390

395

400

art framework

art framework

algorithm(s)

provider(s) - algorithm .
K test '

provider test

* algorithm test

Figure 10: LArSoft algorithm and service model. Black lines represent own-
ership. The coloured arrows show the path the algorithm obtains the provider
through. The green line contours the standard execution environment. Dotted
lines describe testing environments: both service providers and algorithms can
be tested without involving the full framework.

LArSoft were written by users to solve their own specific problems, and then
adopted into the common toolkit. LArSoft encourages users to produce algo-
rithms that perform correctly on any liquid argon detector, and to integrate
them into LArSoft itself.

The preferred model for algorithm design is represented in fig. We refer
to this as factorization model. The underlying principle it is that the algorithm
must be independently testable and portable, using the minimal set of necessary
dependences. This also allows for the algorithms to be used in contexts where
the art framework is not available, provided that some other system supplies
equivalent functionalities as, and only when, needed. The model is made of two
layers:

1. the algorithm, in the form of a class that

e is configurable with FHiCL parameter sets
e prefers LArSoft data products as input and output

e elaborates a single event or part of an event at a time

2. a module for the art framework, that:

17

405

410

415

420

425

430

435

440

e owns and manages the lifetime of one or more algorithm classes

e provides the algorithm(s) with the configuration, the data products
and the information it needs to operate

e delivers algorithm output to the art framework

LArSoft provides data products for many of the common concepts. Algorithms
that deal with these concepts should consume and produce such shared data
products, pairing them with additional, specific data structures when more in-
formation needs to be carried around.

Since algorithms often rely on services, the services also need to follow the
same factorization model and be split in:

1. a service provider, in the form of a class that:

e is configurable with FHiCL parameter sets
e has the minimal convenient set of dependencies

e provides actual functionality
2. a service for the art framework, that:

e owns and manages the lifetime of its service provider
e provides modules with a pointer to the provider

e when relevant, reacts to messages from the framework (e.g., the be-
ginning of a new run) and propagates them to the provider as needed

The module is also responsible of communicating to its algorithms which service
providers to use. The typical implementation of this pattern in the art frame-
work is the following: the module, when setting up the algorithm (possibly
on each event), obtains the services it needs from the framework, obtains the
provider from each of these services, and uses the algorithm interface to prop-
agate these providers to the algorithm itself. Algorithms exclusively interact
with service providers rather than with art services.
Other important guidelines for the development of algorithms are:

interoperability they should document their assumptions in detail, and cor-
rectly perform on any detector if possible

modularity each algorithm should perform a single task; complex tasks can
be performed by hierarchies of algorithms

maintainability they should come with complete documentation and proper
tests

Figure [I0] shows that if algorithms are not framework-dependent, their unit
test can also be framework-independent. Therefore, not only those algorithms
can be developed in a simplified, framework-unaware environment, but they can
also be tested in that same development environment. In other words, the full
development cycle, of which testing is an integral part, can seamlessly happen
in the same environment.

18

445

450

455

exchange format ! LArSoft-library
NG ' interface Sroducts LArSoft tools

| LArSoft

e e e e e e e e e e e e e e e = = = — =

Figure 11: Interaction between LArSoft and an external library. The dashed
line encompasses the components belonging to LArSoft. Shapes and colours are

as in fig. m

hits,
MC truth

(configuration, geometry]

module derived from
LArPandoraParticleCreator

\

clusters,

particle flow...

LArSoft
N e e e e e e e e e e e e e e o o o —— —— — ————— 7

Figure 12: LArSoft workflow including pandora. Data structures in the
pandora namespace are defined in pandora and also known by LArSoft.

5.5 External libraries

We call “external” any library that does not depend on LArSoft, with the pos-
sible exception of its data products. Examples in this category are GENIE,
GEANT4, and pandora.

LArSoft’s modularity can accommodate contributions from external libraries
into its workflow (fig. . The preferred way is to use directly the external
library via its interface. This requires an additional interface module between
LArSoft and the library, in charge of converting the LArSoft data products
into a format digestible by the external library, configuring and driving it, and
extracting and converting the results into a set of LArSoft data products.

This model is exemplified in the interaction between LArSoft and pandora
[14] (fig. : pandora uses its own data classes for input hits, particle flow
results and geometry specification. A base module exists that reads LArSoft
hits, converts them into pandora’s, translates geometry information, and LAr-
Soft clusters, tracks, vertices, and more, out of pandora particle flow objects.
This approach has relevant advantages: it can be fairly fast; it allows a precise

19

—>

—

460

465

470

475

480

485

490

translation of information; it provides the greatest control on the flow within the
library; it defines and tracks the configuration of the external library. Its great-
est drawback is the need for the LArSoft interface to depend on the external
library. If this limitation is not acceptable, a more independent communication
channel can be established via exchange files. In this case, LArSoft interface
translates data products into a neutral format, possibly based solely on ROOT
objects or on a textual representation, and back into data products. The exter-
nal library is in charge of performing the equivalent operations with the library
data format. This is for example the generic communication mechanism with
event generators that support HEPEVT format. The strong decoupling comes
at the price of a fragmented execution chain and the burden of additional con-
figuration consistency control, for example to ensure that a consistent geometry
was used for the information (re)entering LArSoft.

6 Physical view: repositories and packages

LArSoft supports the use of the UNIX Product Support (UPS) system for de-
ployment of LArSoft itself and of the additional software it depends from. This
system is organized in products containing executable code for a specific plat-
form and auxiliary data as needed. LArSoft set up demands from UPS a specific
version of almost every library LArSoft depends on, including for example the
GNU compiler, Boost libraries and CERN ROOT.

LArSoft code base is organized in repositories grouping different functional-
ities. The current list of repositories is:

larcore independent of data products (e.g. geometry description)
lardata defining the shared data products

larevt code independent of simulation and reconstruction algorithms (e.g. cal-
ibration, database access)

larsim detector simulation
larreco physics object reconstruction

larana depending on simulation or reconstruction algorithms (e.g. particle
identification, calorimetry)

larpandora interface with pattern recognition package pandora
lareventdisplay ROOT-based visualization tool

larexample examples of LArSoft modules

larsoft “umbrella” product

Additional LArSoft repositories do not contain source code:

larsoft _data containing small-size, slowly-changing data files

20

495

500

505

510

515

520

525

lar_ci providing a Continuous Integration test system that allows instant, thor-
ough test of the code

LArSoft repositories are maintained in Fermilab Redmine as git repositories.

6.1 Local LArSoft installation
LArSoft can be installed in any supported platform, either with:

binary installation copying prebuilt UPS products from Fermilab server into
a local UPS directory

source installation copying, building and installing into a local UPS directory
the source code of each and every dependent package

Both installation patterns are supported via a single script. In this way, LArSoft
can be installed in virtual machines, personal computers as well as in computing
clusters.

References

[1] R. Kutschke, M. Paterno, and M. Wang, The art workbook. Fermilab, 2015.
URL: https://web.fnal.gov/project/ArtDoc/Pages/workbook.aspxl

[2] “libwda,” URL: https://scisoft.fnal.gov/scisoft/packages/
libwda.

[3] “CLHEP, a class library for high energy physics,” URL: http://cern.ch/
clhep.

[4] “nutools,” URL: https://cdcvs.fnal.gov/redmine/projects/nutools.

[5] C. Andreopoulos et al., “The GENIE Neutrino Monte Carlo Generator,”
Nucl. Instrum. Meth., vol. A614, pp. 87-104, 2010.

[6] C. Hagmann, D. Lange, J. Verbeke, and D. Wright, “Cosmic-ray shower
library (CRY),” 2012. Tech. rep. UCRL-TM-229453 LLNL.

[7] G. Altarelli, R. Kleiss, and C. Verzegnassi, eds., Z Physics at LEP-1 vol.
3: event generators and software, 1989. p. 327-330.

[8] S. Agostinelli et al., “Geantda simulation toolkit,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 506, no. 3, pp. 250 — 303, 2003.

[9] “ROOT data analysis framework,” URL: https://root.cern.ch.

[10] “FHIiCL configuration language,” URL: https://cdcvs.fnal.gov/
redmine/projects/fhicl/wiki,

21

https://web.fnal.gov/project/ArtDoc/Pages/workbook.aspx
https://scisoft.fnal.gov/scisoft/packages/libwda
https://scisoft.fnal.gov/scisoft/packages/libwda
https://scisoft.fnal.gov/scisoft/packages/libwda
http://cern.ch/clhep
http://cern.ch/clhep
http://cern.ch/clhep
https://cdcvs.fnal.gov/redmine/projects/nutools
https://root.cern.ch
https://cdcvs.fnal.gov/redmine/projects/fhicl/wiki
https://cdcvs.fnal.gov/redmine/projects/fhicl/wiki
https://cdcvs.fnal.gov/redmine/projects/fhicl/wiki

530

[11] “Unix product support (UPS),” URL: http://www.fnal.gov/docs/
products/ups!

[12] “cetbuildtools,” URL: https://cdcvs.fnal.gov/redmine/projects/
cetbuildtools/wikil

[13] “Multi repository build system (MRB),” URL: https://cdcvs.fnal.gov/
redmine/projects/mrb/wiki/The_mrb_proposal.

[14] J. S. Marshall and M. A. Thomson, “The pandora software development
kit for pattern recognition,” Fur. Phys. J. C, vol. 75, no. 9, p. 439, 2015.

22

http://www.fnal.gov/docs/products/ups
http://www.fnal.gov/docs/products/ups
http://www.fnal.gov/docs/products/ups
https://cdcvs.fnal.gov/redmine/projects/cetbuildtools/wiki
https://cdcvs.fnal.gov/redmine/projects/cetbuildtools/wiki
https://cdcvs.fnal.gov/redmine/projects/cetbuildtools/wiki
https://cdcvs.fnal.gov/redmine/projects/mrb/wiki/The_mrb_proposal
https://cdcvs.fnal.gov/redmine/projects/mrb/wiki/The_mrb_proposal
https://cdcvs.fnal.gov/redmine/projects/mrb/wiki/The_mrb_proposal

535

540

545

550

555

560

565

570

Comments

2016/02/11, 16:36, David Adams dladams@bnl.gov (“Re: LAr-
Soft architecture document draft”)
[Q 0201] 1. Could you please clarify how algorithms instantiate their providers?

This is the blue line in fig.
[A 0201.1] [GP] T have added text in section

The typical implementation of this pattern in the art framework is the following;:
the module, when setting up the algorithm (possibly on each event), obtains the
services it needs from the framework, obtains the provider from each of these
services, and uses the algorithm interface to propagate these providers to the
algorithm itself.

[Q 0202] 2. And how modules instantiate their algorithms?
[A 0202.1] [GP] Ttem [2] has, first bullet, that the art module:

’ owns and manages the lifetime of one or more algorithm classes

I feel this is enough information, as the way it does is framework-dependent,
not prescribed and irrelevant to LArSoft itself. Which kind of information you
would like to see?

[Q 0203] 3. You require that algorithms consume and emit only data prod-
ucts. To me, this implies they are fairly high-level tools. Do you envision that
most of the reconstruction code reside directly in the algorithms or external
products such as Pandora? If not, the document should say something about
how such code is organized. Can/should it reside in services, configurable utili-
ties, non-configurable utilities or some mix?

[A 0203.1] [GP] 1 have tried to clarify the wording in item Algorithms
should prefer LArSoft data structures when suitable. For example, a hit finder
should not indulge in its own hit structure but rather deal with recob: :Hit.
If recob::Hit does not contain all the information the algorithm needs, it’s
still recommended that the algorithm uses a structure containing a recob: :Hit
verbatim (“decorating” the hit).

In the text I did not go into algorithm “levels”. If the new text is still mislead-
ing, that might be necessary. The idea is that low level algorithms that deal
with concepts specific to the algorithm use whatever they need to, while a high
level algorithm that produces clusters from hits needs to expose an interface
based on recob::Hit and recob: :Cluster, even if internally it utilizes lower
level algorithms that do not.

[Q 0204] 4. You indicate that a module can hold multiple algorithms. Do
we have such cases? Reading and writing data products is what a module does
and so I expected a one-to-one mapping. FCL could specify any sequences. This
seems like a partial step toward moving the code from algorithms to tools but
with the limitation that ”tools” can only receive and emit data products.

[A 0204.1] [GP] 1 suppose the clarification on [Q 0203] should show that a
one-to-one mapping is not expected. An example of multiple algorithms owned
by the same module might be in signal simulation, where one algorithm adds

23

mailto:dladams@bnl.gov

575

580

585

590

signal reshaped by field response and another adds noise. While art definitely
allows this to happen in sequence, we are probably not interested in saving the
intermediate noiseless step, and, also important, given the chance we want to
process channel by channel rather than event by event (this may be a less-than-
ideal example since we should be considering channel correlations...).

[Q 0205] 5. TIs the model that that providers and algorithms are usable
outside of art but services and modules are not? If so, this should be made
explicit and it should be noted that this implies algorithms and providers cannot
make use of services.

[A 0205.1] [GP] That is the current model. Section [5.4]spells out “Algorithms
exclusively interact with service providers rather than with art services.”.

[Q 0206] 6. Do you expect algorithms to be used outside art and the testing
framework? If so, what requirements are put on this alternative framework?
Can it or must it be LArLite? Can and how does one read and write event
data? These are important points because they motivate (or fail to motivate)
the decision to complicate the SW by introducing providers and algorithms.
[A 0206.1] [GP] (TODO)

24

	Introduction
	Purpose
	Scope

	Overview
	Logical view: components
	Internal components

	Process view: workflows
	Simulation workflow
	Reconstruction workflow
	Analysis workflow

	Deployment view: development and extensibility
	Development environment
	Testing
	Data products
	User code
	External libraries

	Physical view: repositories and packages
	Local LArSoft installation

