art - Support #8227

possible C++14 issue
04/02/2015 08:37 AM - Jim Kowalkowski

Status: Closed Start date: 04/02/2015
Priority: Normal Due date:

Assignee: Marc Paterno % Done: 100%
Category: Infrastructure Estimated time: 2.00 hours
Target version: Spent time: 0.00 hour
Scope: External SSI Package:

Experiment: LBNE

Description

There has been indirect reports that C++14 is causing trouble within LBNE. Below is the edited conversation that indicates some of
this trouble. Can someone contact Ben or others to find out specific details of what the failure is to determine how we might help to
address it? To reiterate, | would like information collected about the failures that are happening in regards to C++14 in order to then
figure out what needs to be done do to alleviate them.

In addition, | would like someone to find out about the the white paper that is mentioned. Please find and obtain it so a meeting can
be scheduled to discuss it.

Thanks.

relevant parts of the email thread

| got another LBNE complaint (I attached the thread below). This is my summary:

- Art contains C++14 code

- This restricts the number of older systems that can be support

- Debugging tools also on recent platforms are not fully usable with C++14

- There exists a set of changes to make Art/lower level libraries C++11 compliant

In general, the decision to use C++14 code in Art/lower level libraries is questioned, because it is cutting edge and limits platform
possibilities. The tool set is not yet fully C++14 capable, especially in the area of debugging.

Thanks,
OLl

FYI the issue it's not the first time the issue of C++14 is being discussed. A few people in and
around LBNE (certainly including myself) did not hear any compelling reasons why this revision

of the standard needs to be used right away. And frankly, it just looks gratuitous. Ben, Brett and
Patrick are doing infrastructure work for art not because they have nothing better to do but because
people encountered real problems with the art environment. We did not receive any feedback

to the white paper in Dec'14 and no assistance along the lines described in this paper. I...

Maxim

Begin forwarded message:

From: Brett Viren <bv@bnl.gov>

To: "Morgan, Ben" <Ben.Morgan@warwick.ac.uk>

Cc: Maxim Potekhin <potekhin@bnl.gov>, Elizabeth S Sexton-Kennedy <sexton@fnal.gov>
Subject: Re: Building current Art in C++11 w/GCC/Clang

Date: March 6, 2015 at 12:05:14 PM CST

Maxim, Liz, | recommend you forward Ben's report to Oli.

[.]

-Brett.

04/02/2021 1/4

mailto:bv@bnl.gov
mailto:Ben.Morgan@warwick.ac.uk
mailto:potekhin@bnl.gov
mailto:sexton@fnal.gov

"Morgan, Ben" <Ben.Morgan@warwick.ac.uk> writes:
Hi Brett,

I'm cc’'ing Maxim and Liz in this as they might find it of interest given the state things were left
before New Year with LBNE.

To update and get to a common starting point - | got back to compiling everything up to the art
level both on Linux with GCC 4.9 and Mac with Clang (Xcode 6). Thanks to Brett and Patrick’s

work, we have a working release of Art 1.13.01 sans UPS on LBNE GitHub. It’s this that | came back to.

Whilst everything was working nicely on Linux/GCC, | had issues
yesterday building on Mac/Clang because some tests in Fhicl CPP were
failing and | could not debug these.

That is due to an issue with the Clang not fully being able to output
debug info for all C++14 constructs. A deficiency/bug for sure, but
illustrates how close to the bleeding edge the Art team are sailing,

if true cross platform/compiler support is intended.

I've therefore done something rather simple (or crazy/stupid depending on your point of view).
| took the current LBNE release of Art/lower level libraries and made it C++11 compliant. This
only took me this afternoon. You can see the full set of changes here:

https://github.com/LBNE/FNALCore/compare/develop...feature/cxx11-adaption
and here:
https://github.com/L BNE/fnal-art/pull/1/files

What have we gained by this?

i) We can now build all of Art's dependencies on both platforms, and
all tests, bar one on Mac pass. The difference if that debugging can
now be done on Mac with lldb. In addition, a much wider range of
systems can be supported “out the box”.

ii) There has been minimal change to the code - in other words, the

move to C++14 (and most of the features were used) brought nothing to

the usability or functionality of Art. Where

there were larger changes, std::make_unique and string literals, these can be supported by
C++11 backports (ala cpp0x).

ii) Traded code for time - sure C++14 is nice, what’s the price? Is
it really so bad to wait 6-12 months for tools on all platforms to
catch up?

What have we lost by this?

i) Use of C++14. | actually do want to use this - but only when the tools are ready. Yes, we
should hope that system compilers keep step with developments, sure we

can build our own compiler but also why go the the bleeding edge when

there’s no technical requirement to do so. As the code diffs above

show, Art has gained nothing practical by this move, at least

obviously, given the price in loss of portability and consequent

additional complexity.

[.]

All of that comes with a great big caveat that this is purely a “it builds, pass tests, and runs”.
Nevertheless, check the actual diffs - not much has changed ultimately...

[.]

Ben.

History

#1 - 04/02/2015 08:50 AM - Oliver Gutsche

Here is the white paper:

04/02/2021

2/4

mailto:Ben.Morgan@warwick.ac.uk
https://github.com/LBNE/FNALCore/compare/develop...feature/cxx11-adaption
https://github.com/LBNE/fnal-art/pull/1/files

https://indico.fnal.gov/getFile.py/access?contribld=3&resld=0&materialld=0&confld=9181

Thanks,

OLI

#2 - 04/06/2015 11:37 AM - Christopher Green
- Category set to Infrastructure
- Status changed from New to Assigned

- Assignee set to Marc Paterno

#3 - 04/06/2015 12:28 PM - Adam Lyon

The XCode beta 6.3 release notes say...

Apple LLVM Compiler Version 6.1

« Xcode 6.3 updates the Apple LLVM compiler to version 6.1.0. This new compiler includes full support for the C++14 language standard, a wide
range of enhanced warning diagnostics, and new optimizations. Support for the arm64 architecture has been significantly revised to align with ARM’s
implementation, where the most visible impact is that a few of the vector intrinsics have changed to match ARM’s specifications.

It doesn't say anything about the debugger, but hopefully that's updated for C++14 too.
| think the official XCode 6.2 doesn't have this.

#4 - 04/06/2015 04:49 PM - Marc Paterno

There are at least two issues discussed here, and we're working on both of them.

First, | am working on getting into contact with Ben Morgan to obtain more specific information regarding the problem he has encountered with
C++14.

The second issue is the white paper. At our regular art issues handling meeting this morning, we agreed that Jim Amundson is going to take the lead
in contacting the authors of the paper to understand the issues raised in the paper.

#5 - 04/08/2015 08:38 PM - Adam Lyon

XCode 6.3, with the C++14 compatible clang, is out of beta and is now the official release. See
https://itunes.apple.com/us/app/xcode/id4977998357Is=1&mt=12 .

#6 - 04/14/2015 11:13 AM - Marc Paterno

Marc spoke with Ben for about half and hour to get the details of the C++14 language issue.

The tool that failed to understand the C++14 feature was some combination of the clang compiler and the lldb debugger. In the Xcode release Ben
was using, clang could not emit debugging symbols for some C++14 constructs. So the lldb debugger could not understand the resulting code.

The C++14 features that caused the problem were two:

1. return type deduction for functions (using 'auto' as the return type)
2. generic lambdas (using 'auto’ to deduce argument types in a lambda expression)

The failing program that Ben was trying to debug was one of the tests in fhiclcpp: parse_document_test.cc, in particular the "bad_lookup" test case.
The newest XCode is: Apple LLVM version 6.1.0 (clang-602.0.49) (based on LLVM 3.6.0svn). This came out of beta (as Adam noted above) more
recently than the original report of failure. Marc and Ben each have done some very simple test of the new release that seem encouraging, but these
tests are not sufficient for us to be sure the problem is solved in the new release.

Ben has agreed to take a look at the result of building the code with the new version of clang, and will report on the success or failure when he is able.

#7 - 04/17/2015 10:18 AM - Kyle Knoepfel

- Target version set to 521

#8 - 05/07/2015 05:17 AM - Ben Morgan

Just a quick update on this for the Stakeholders Meeting - since talking to Marc, | haven't had the time to perform the needed checks. | hope to do so
within the next two-three weeks. There is a patch release to Xcode (6.3.1), but the LLVM/Clang version does not appear to have changed. Since the
new 1.14 release of art is out, but the Clang tests are using 1.13.1:

https://github.com/DUNE/fnal-art/tree/alt-cmake-1.13.01

I'll check everything with this first, then assuming things work, check with 1.14. Note that there is still a hard "no go" (I think) at present with Clang due
to the use of gcexml for dictionary generation. At least, | was never able to get dictionaries generated or compiled with clang as gccxml's

04/02/2021 3/4

https://indico.fnal.gov/getFile.py/access?contribId=3&resId=0&materialId=0&confId=9181
https://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12
https://github.com/DUNE/fnal-art/tree/alt-cmake-1.13.01

parser/compiler. That should resolve with support for Root6/rootcling dictionaries, but that's another issue.

#9 - 08/22/2016 11:48 AM - Kyle Knoepfel
- Status changed from Assigned to Closed

- % Done changed from 0 to 100
We believe this is resolved by moving to ROOTS6.

#10 - 10/23/2017 12:12 PM - Kyle Knoepfel
- Target version deleted (521)

04/02/2021 4/4

http://www.tcpdf.org

