artdaq - Bug #23348

Memory leaks while reading artdaq Fragments from data files
09/27/2019 03:18 PM - Eric Flumerfelt

Status: Closed Start date: 09/27/2019
Priority: Normal Due date:

Assignee: Kyle Knoepfel % Done: 100%
Category: Estimated time: 0.00 hour
Target version: artdaq_core v3_05_07

Experiment: - Co-Assignees:

Description

This issue arose from close inspection of the DUNE data unpacking while debugging issue #23319.
Relevant Comments from that issue:

Updated by Tingjun Yang 1 day ago

Quote Edit Delete

Pengfei Ding wrote:

Yeah, there are. "Succeeds" meant "art exit with 0" to me.

Thanks. Memory usage seems high.
#27
Updated by Pengfei Ding 1 day ago
File valgrind.out valgrind.out added
Quote Edit Delete
Attached file contains the valgrind output with
valgrind --leak-check=yes —--tool=memcheck —--track-origins=yes —--num-callers=50 --log-file=valgrind
.out —-suppressions=${RO0OTSYS}/etc/valgrind-root.supp lar -c RunRawDecoder.fcl np04_raw_run00970
1_0004_dll.root -n 2
Peak resident memory usage was 2994.43 MB.
I have another valgrind job running over the full 50 events in the raw file (expect to finish in ~
40 minutes.
#28
Updated by Pengfei Ding 1 day ago
File valgrind2.out valgrind2.out added
Quote Edit Delete

Attached the valgrind output for the full 50 events in the file. (Possibly lost ~4.07GB.)

The issue is likely to be in line 961-962 of dunetpc/dune/Protodune/singlephase/RawDecoding/PDSPTP
CRawDecoder_module.cc

==223821== LEAK SUMMARY:

==223821== definitely lost: 5,745,989 bytes in 38,317 blocks

==223821== indirectly lost: 137,621 bytes in 164 blocks

==223821== possibly lost: 4,068,422,379 bytes in 54,396 blocks

==223821== still reachable: 266,349,295 bytes in 176,181 blocks

==223821== of which reachable via heuristic:

==223821== newarray : 95,704 bytes in 187 blocks

11/02/2020 1/6

https://cdcvs.fnal.gov/redmine/issues/23319

==223821== multipleinheritance: 6,768 bytes in 9 blocks

==223821== suppressed: 1,365,831 bytes in 15,879 blocks

==223821== Reachable blocks (those to which a pointer was found) are not shown.
==223821== To see them, rerun with: --leak-check=full --show-leak-kinds=all
==223821==

==223821== For counts of detected and suppressed errors, rerun with: -v

==223821== ERROR SUMMARY: 268772 errors from 217 contexts (suppressed: 487514 from 1738)

#29
Updated by Thomas Junk 1 day ago
Quote Edit Delete

Thanks for the news; that's what I saw in a test and thought I had just built dune_raw_data from t
he bugfix branch incorrectly. Looks like there will need to be some debugging, comparing a working
job with this one side by side. The no valid nticks to check message comes from the RCE decoder.

#30
Updated by Thomas Junk 1 day ago
Quote Edit Delete

I spotted the trouble with failing to unpack the RCE fragments. There's a check on the integrity o
f the fragment that needs to look at the header and the trailer, and it was shifted relative to a
hardcoded offset, which, when updated, allowed the integrity check to pass. I'll ask Eric what mix
ture of exposed offset methods is supported to get the size I need to do the check more robustly a
gainst changes in the future.

There's still a memory leak however.
#31

Updated by Thomas Junk 1 day ago
Quote Edit Delete

Commenting out the removeCachedProduct calls doesn't change the memory leak.
#32

Updated by Thomas Junk 1 day ago

Quote Edit Delete

I commented out the _processFELIX call and it still leaks, just more slowly.
#33

Updated by Thomas Junk 1 day ago

Quote Edit Delete

I trimmed the raw decoder module down to just two getByLabel calls, one for RCE container fragment
s, the other for FELIX container fragments. It runs very quickly, but still leaks memory.

#34

Updated by Thomas Junk 1 day ago

Quote Edit Delete

And replacing getByLabel calls with getValidHandle calls changes nothing —-- leaks memory very quic
kly. No artdag_core calls involved, just art.
#35

Updated by Pengfei Ding 1 day ago
Quote Edit Delete

Thomas Junk wrote:

And replacing getByLabel calls with getValidHandle calls changes nothing —-- leaks memory very
quickly. No artdag_core calls involved, just art.

Do you have a backtrace of using getValidHandle to compare with getByLabel? The common downstream
call might indicate the origin of the memory leak.

#36

Updated by Pengfei Ding 1 day ago

File Screen Shot 2019-09-26 at 1.12.33 PM.png Screen Shot 2019-09-26 at 1.12.33 PM.png added
File Screen Shot 2019-09-26 at 1.11.54 PM.png Screen Shot 2019-09-26 at 1.11.54 PM.png added

Quote Edit Delete

11/02/2020 2/6

Tried to run the Raw Decoder with memory debugging in DDT. It got segfault because "address not ma

pped to object". See attached screenshots for details. Problem seems to be with line 24 of getEntr
y.cc in art_root_io package.
#37

Updated by Kyle Knoepfel about 19 hours ago
Quote Edit Delete

I have started to investigate.

#38

Updated by Thomas Junk about 16 hours ago
Quote Edit Delete

Here's my super-stripped-down PDSPTPCRawDecoder_module.cc:

/dune/app/users/trj/splitterl0/srcs/dunetpc/dune/Protodune/singlephase/RawDecoding/PDSPTPCRawDecod
er_module.cc

which just has the two getByLabel calls and makes an empty RawDigit collection in the event (maybe

even that can go, but it's a producer module so I figured it would have to produce something). I
was going to rename it and put it on Tingjun's test branch. But it would be good to see if memory
leaks happen when reading in other data products in other modules.

Related issues:
Related to artdaq - Bug #23319: Problems reading ProtoDUNE-SP raw data file w... Closed 09/24/2019

History

#1 - 09/27/2019 03:18 PM - Eric Flumerfelt
- Related to Bug #23319: Problems reading ProtoDUNE-SP raw data file with artdaq_core v3_05_02 added

#2 - 09/27/2019 04:23 PM - Thomas Junk

For what it's worth, | ran valgrind on

lar -n 10 -c RunRawDecoder.fcl
root://fndca1l.fnal.gov:1094/pnfs/fnal.gov/usr/dune/tape_backed/dunepro/protodune-sp/raw/2019/detector/test/None/00/00/97/01/np04_raw_run00970
1_0004_dli1.root

with an older dunetpc, v08_28_01, which is built on root v6_16_00. As noted in the associated ticket, it doesn't have a big leak.

==6321== LEAK SUMMARY:

==6321== definitely lost: 5,724,190 bytes in 38,179 blocks

==6321== indirectly lost: 40,011 bytes in 603 blocks

==6321== possibly lost: 3,545,856 bytes in 53,457 blocks

==6321== still reachable: 201,330,025 bytes in 202,554 blocks

==6321== of which reachable via heuristic:

==6321== newarray : 93,944 bytes in 177 blocks
==6321== multipleinheritance: 7,880 bytes in 9 blocks
==6321== suppressed: 0 bytes in 0 blocks

==6321== Reachable blocks (those to which a pointer was found) are not shown.
==6321== To see them, rerun with: --leak-check=full --show-leak-kinds=all

#3 - 09/29/2019 11:27 AM - Thomas Junk

| tried my super-stripped-down module just reading raw::RawDigits instead of artdaq::Fragments from a decoded file instead of a raw file, just to see if
it leaked too with the new root, and it does not. The input data size is larger because it was uncompressed.

#4 - 09/29/2019 11:57 AM - Thomas Junk

And | misspoke in the previous ticket about my super-stripped-down version of the raw decoder which just calls getByLabel not calling anything in
artdag. Indeed, the constructor artdaq::Fragment::Fragment() gets called during fragment readin.

#5 - 09/29/2019 01:39 PM - Thomas Junk

| checked out and built the branch bugfix/23345_ContainerFragment_FixFragmentAllocation of artdag-core and ran my stripped down fragment
reader and it still leaks.

#6 - 09/30/2019 11:46 AM - Kyle Knoepfel
- File fast_clone.fcl added

- File fast_clone.log added

11/02/2020 3/6

- File no_fast_clone.fcl added

- File no_fast_clone.log added

See the attached configuration files and job logs. The jobs only read the input file referenced above (all 50 events) and write the products to an
output file, with no processing in between. The following maximum RSS is reached:

Fast-cloning enabled 296 MB

Fast-cloning disabled 4725 MB

The memory growth for the no-fast-cloning job occurs throughout the course of the no-fast cloning job. Will continue to debug.

#7 - 09/30/2019 11:47 AM - Kyle Knoepfel

- Status changed from New to Assigned

#8 - 09/30/2019 03:34 PM - Eric Flumerfelt

| was running against my old container test file (https:/ar .fnal.gov, DataFiles/RawFragmentH rV1_example_file.root), and noticed that it
was using far too much memory and taking much longer than with RawFragmentHeaderV2_example_file.root. | found that by replacing the TRACEN
calls in Fragment.hh with TLOG calls, the memory usage and processing speed was much improved.

Fix is on artdag-core:bugfix/23348_Fragment_Replace TRACENWIithTLOG

#9 - 09/30/2019 04:01 PM - Lynn Garren

Kyle, a test build of artdag_core "v3_05_06" (no tag) is available on scisoftbuild01 under /home/garren/scratch/products.

#10 - 09/30/2019 04:39 PM - Kyle Knoepfel

Eric, with what version of artdaq_core did you start to notice a difference in TRACEN vs. TLOG behavior?

I'm running the bare bones job (just reading/writing the fragments) with version v3_05_02, which appears to be a place where only std::cout was used
in the Fragment.hh file. However, I'm still seeing substantial memory growth.

#11 - 09/30/2019 04:42 PM - Eric Flumerfelt

| was working with develop. | changed the couts to TRACEN between artdaq_core v3_05_03 and v3_05_04, while fixing the bug that was causing
DUNE jobs to crash.

#12 - 10/01/2019 09:08 AM - Kyle Knoepfel
- File root_6.16_valgrind.log added
- File root_6.18_valgrind.log added

As the input file (np04_raw_run009701_0004_dI1.root) contains only art/artdaqg constructs, | was able to reproduce the memory growth by building
artdaqg_core v3_04_20 against both ROOT 6.16 and 6.18. Specifically, running over 5 events in the input file:

artdag_core commit art_root_io version canvas_root_io ROQT version VmPeak (MB) VmHWM (MB)

version
222453e 1.00.07 (s86) 1.03.04 6.16/00 1046.39 698.094
222453e 1.00.09 (s91) 1.03.06 6.18/04 1310.09 956.346

The job reads in the input file (fast-cloning disabled) and then writes the products immediately to disk. If | increase the number of events to 50 (the full
file), the ROOT 6.18/04 build results in an over 4 GB memory growth.

The only substantive change in art_root_io is the change in canvas_root_io versions; the only substantive change in canvas_root_io is the change in
ROOT versions and the addition of a regression test that is not accessible to artdaq_core.

Please see the attached valgrind logs for the jobs referenced above. The most substantial difference between the two valgrind logs appears to be the
extra block of "possibly lost" memory for the ROOT 6.18 version:

==420317== 417,144,328 bytes in 16 blocks are possibly lost in loss record 12,133 of 12,133

==420317== at O0x4C2AAF8: operator new[] (unsigned long) (vg_replace_malloc.c:423)

==420317== by 0x105BCO9EF: TBuffer::TBuffer (TBuffer::EMode, int) (TBuffer.cxx:85)

==420317== by 0x10C9C2BD: TBufferIO::TBufferIO(TBuffer::EMode, int) (TBufferIO.cxx:51)
==420317== by 0x10C8CBD1l: TBufferFile::TBufferFile (TBuffer::EMode, int) (TBufferFile.cxx:89)

11/02/2020 4/6

https://artdaq.fnal.gov/TestDataFiles/RawFragmentHeaderV1_example_file.root

==420317== by 0x11A29E67: R__InitializeReadBasketBuffer (TBuffer*, int, TFile*) (TBasket.cxx:419)

==420317== by 0x11A2A119: TBasket::ReadBasketBuffers(long long, int, TFile*) (TBasket.cxx:504)
==420317== by 0x11A3A10B: TBranch::GetBasketImpl (int, TBuffer*) (TBranch.cxx:1245)
==420317== by 0x11A3A85C: TBranch::GetBasketAndFirst (TBasket*&, long long&, TBuffer*) (TBranch.cxx:1362)
==420317== by 0x11A3B30A: TBranch::GetEntry(long long, int) (TBranch.cxx:1589)

==420317== by 0x11A4E274: TBranchElement::GetEntry(long long, int) (TBranchElement.cxx:2652)
==420317== by 0x11A4DE3F: TBranchElement::GetEntry(long long, int) (TBranchElement.cxx:2596)
==420317== by O0x11A4DE3F: TBranchElement::GetEntry(long long, int) (TBranchElement.cxx:2596)
==420317==

==420317== LEAK SUMMARY:

==420317== definitely lost: 13,463 bytes in 97 blocks

==420317== indirectly lost: 270,311 bytes in 76 blocks

==420317== possibly lost: 417,150,634 bytes in 44 blocks

==420317== still reachable: 48,273,146 bytes in 77,422 blocks

==420317== of which reachable via heuristic:

==420317== newarray : 58,376 bytes in 95 blocks

==420317== multipleinheritance: 928 bytes in 2 blocks

==420317== suppressed: 497,781 bytes in 5,287 blocks

==420317== Reachable blocks (those to which a pointer was found) are not shown.

==420317== To see them, rerun with: --leak-check=full --show-leak-kinds=all

==420317==

==420317== For counts of detected and suppressed errors, rerun with: -v

==420317== ERROR SUMMARY: 1087 errors from 39 contexts (suppressed: 10420 from 407)
Philippe, do you have guidance?

#13 - 10/01/2019 09:56 AM - Philippe Canal

The possibly unreacheable is concerning and needs to be understood and then fixed BUT is an order of magnitude too small to explain the 4GB
memory footprint.
Can we run massif (or any other memory profiler) on the failing example to see where the memory is being allocated?

#14 - 10/01/2019 09:58 AM - Kyle Knoepfel

It's an order of magnitude too small because the valgrind report applies to a job with only 5 events processed (instead of the full 50). | will run massif
on the ROOT 6.18 build and post it once it's available.

#15 - 10/01/2019 10:10 AM - Kyle Knoepfel
- File massif.out.437219 added

massif output attached--need to run ms_print on it.

#16 - 10/01/2019 10:14 AM - Philippe Canal

Can you run it on the 50 events case?

#17 - 10/01/2019 10:31 AM - Kyle Knoepfel

- File massif.out.50_events added

50-event massif output attached.

#18 - 10/01/2019 10:39 AM - Philippe Canal

quite/strange .. | will need a debug build of ROOT to try to trace down what is different in this setup than any other (aka the 'leak’ appears to be in the
inner guts of TTree ...)

#19 - 10/01/2019 10:42 AM - Lynn Garren

Philippe, debug builds of root are available on scisoftbuild01. Do you need them elsewhere?

#20 - 10/01/2019 10:44 AM - Philippe Canal

yes .. | am lame/forgetful :). Could | be remembered how to setup and run the failing example with the debug build of ROOT?
Oh that ... and | don't have access to scisoftbuild01

Warning: Permanently added 'scisoftbuild01.fnal.gov' (ECDSA) to the list of known hosts.
Permission denied (gssapi-keyex,gssapi-with-mic).

#21 - 10/01/2019 10:51 AM - Kyle Knoepfel

Once you have permissions on scisoftbuild01, you can rerun the job by doing:

11/02/2020 5/6

/products/setup
PRODUCTS=/scratch/garren/products: $PRODUCTS
setup artdaq_core v3_04_22 —-g el7:debug:s91
setup art_root_io v1_00_09 -g el7:debug

vV V. V V V

The debugging tools:

> setup valgrind v3_14_0
> setup gdb

If you only want to run with 5 events, add the "-n 5" option to the art command line.

#22 - 10/01/2019 05:55 PM - Philippe Canal

The problem is resolved in https:/github.com/root-project/root/pull/4461.
The 'unusual' feature of the file is that it is uncompressed which triggers a recent bug (v6.18) which lead to the usage of broken code (existing since

v5.32 but actually never 'executed' per se)

#23 - 10/03/2019 09:36 AM - Tingjun Yang

art —c /home/knoepfel/no_fast_clone.fcl /home/knoepfel/input.root

Thank you Philippe for identifying and fixing the problem. Is the plan to release a new version of root with this bug fix so art/larsoft can use it? Thanks.

#24 - 10/03/2019 09:47 AM - Lynn Garren

Indeed. We are building a new stack with root v6_18_04b. A build of the nutools suite is now available. | am in the process of installing nutools
v3_04_03 and artdaq_core v3_05_06 on cvmfs. It should be available in about an hour. Expecting to tag the larsoft release sometime this afternoon.

We're pushing hard to get this out.

#25 - 10/03/2019 09:47 AM - Lynn Garren
Forgot to say that Kyle tested with root v6_18_04b and it looks good.

#26 - 10/03/2019 09:49 AM - Tingjun Yang

Sounds great. Thanks!

#27 - 10/04/2019 09:12 AM - Lynn Garren
- % Done changed from 0 to 100

- Status changed from Assigned to Resolved

Resolved with root v6_18_04b and artdaqg_core v3_05_06 in larsoft vO8_32_00.

#28 - 10/08/2019 12:15 PM - Eric Flumerfelt
- Target version set to artdaq_core v3_05_07

- Status changed from Resolved to Closed

Files

no_fast_clone.log
no_fast_clone.fcl
fast_clone.log
fast_clone.fcl
root_6.18_valgrind.log
root_6.16_valgrind.log
massif.out.437219

massif.out.50_events

11/02/2020

5.83 KB
107 Bytes
5.83 KB
106 Bytes
75.4 KB
38.8 KB
796 KB
360 KB

09/30/2019
09/30/2019
09/30/2019
09/30/2019
10/01/2019
10/01/2019
10/01/2019
10/01/2019

Kyle Knoepfel
Kyle Knoepfel
Kyle Knoepfel
Kyle Knoepfel
Kyle Knoepfel
Kyle Knoepfel
Kyle Knoepfel
Kyle Knoepfel

6/6

https://github.com/root-project/root/pull/4461
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/ReleaseNotes083200
http://www.tcpdf.org

