BluArc Monitoring
Proposal, version 2

Igor Mandrichenko
2/15/13

Problem Description
The problem of BluArc overloading is documented in the Problem Management report DocDB #4995. Usually, a BluArc head node gets overloaded as a consequence of excessive access to one of the disk arrays attached to it. Once the head node gets overloaded, access to all other disk volumes served by this head slows down to a halt.

There are seem to be 2 reasons for a disk array overload:
1. excessive data transfer rate – for example, multiple grid jobs accessing the same data file or data files located on the same disk array
2. excessive rate of I/O operations – usually caused by opening and closing one or more files at very high rate

Presence of any one or both of these conditions will be referred to as “BluArc overload”.

Project Objective
Objectives of this project:
1. Problem detection: detect the condition and generate some sort of alarm when load on one of BluArc head nodes and/or disk arrays approaches certain limit.
2. Problem mitigation: Collect, store, analyze and present information, which would help identify and eliminate the source of the overload.
Problem Detection
It is possible to receive byte traffic and I/O operation rate metrics from the BluArc and use these metrics to trigger an alarm when one of them exceeds certain threshold.

CMS is writing fixed size (10MB) file to each of BluArc volumes periodically and uses the write time as a measure of BluArc/volume performance.
Problem Investigation
There are 2 most common conditions, which can cause BluArc overload, and there are different ways to diagnose and investigate each one.

Excessive Data Transfer Rate
Typically, this happens when multiple grid jobs, correlated in time, are trying to access the same data file or files from the same BluArc volume. This condition can be detected by monitoring all files, opened by all grid jobs and selecting those jobs, which are located in BluArc. This can be done by periodic running lsof tool or scanning of /proc virtual directory on each grid worker node and recording which file is open by which process. Then we can look for file(s) or a subdirectory, which became “popular” around the time of the BluArc overload. Once such a file or a subdirectory is identified, one can find the grid job or jobs the offending processes belong to.

This condition is relatively easy to detect because usually these are large files and they remain open for relatively long time.

It seems to be sufficient to scan for open files around once per minute.

[bookmark: _GoBack]An alternative approach is to count file descriptors on worker nodes and attribute them to individual users. This is the approach used by CMS. This method does not seem to be as promising because a quick measurement on single worker node showed that number of BluArc files simultaneously open can go up to 800 without overloading BluArc. Under normal conditions, many of the open files are shell scripts and executables
Excessive File Opening and Closing
This condition is much more difficult to detect by periodic scanning because we will not be able to see any long-lived condition detectable my monitoring. The only indication, which we might be able to use in this case is an excessive number of opened/closed TCP sockets to a BluArc head node. These sockets will be visible in the “netstat” output as those in “TIME_WAIT” state. But whether or not this technique can be used depends on the specifics of the TCP-based NFS protocol, which are unknown at this time.

Proposal
The “popular file” monitoring described above seems to be most promising for several reasons:
1. It is easy and straightforward to implement and can lead to the batch process(es) causing the overload relatively easily.
2. Lately high data transfer rate seems to be more common reason for BluArc overload.

So the proposal is to implement “popular file” monitoring as follows:
Data Collection on Grid Nodes
On every grid node, run data collector process as a daemon or a cron job. The process will periodically (1/minute):
1. Use lsof tool or scan through /proc/*/fd subdirectories of all the processes
2. Select only files located in BluArc by analyzing their physical path
3. Trace each process, which has an open file in BluArc back to its job leader process and find out what is the real username of the batch job by looking at the X.509 proxy file name, which has real username in its name. The proxy file will be found in CWD of the process running “condor_starter” executable.
4. Send tuple <node name, timestamp, process id, process uid, real username, file path> to the central data repository using HTTP REST or UDP

Data Collection from BluArc
Periodically send byte transfer and I/O operations rate information from BluArc to the central data repository using HTTP REST.

In addition to that, we can use the method used by CMS – periodically write a 10 MB file into each or some of BluArc volumes and record write time. This will allow us to identify specific volume or volumes, which may be overloaded. However, this method has to be used carefully because it may not scale well with large number of volumes to monitor. In that case, only some, perhaps most active volumes need to be probed.
Data Analysis and Presentation
Implement a web site with 2 types of charts, produced based on the collected data:
1. BluArc performance (integral and/or per-volume) as a function of time
2. File and directory “popularity” as a function of time. Select 10 most “popular” files and most popular subdirectories in BluArc and show their “popularity” as a function of time. Popularity is be defined as total number of grid processes which have or had this file or any file in the subdirectory open during certain time interval (last 10 minutes, last hour?)

Correlating these 2 types of charts, it will be easy to tell that BluArc overload was probably caused by access to certain file or files in certain subdirectory. Once that is established, the web site can also list all the processes, which have this file or these files open. This information can be used to find the offending grid jobs.

Also, in many cases, it will be sufficient for the experiment representative to just look at the location of the “popular” data to know exactly who is doing this.

