
TIssue v2 Roadmap

Lauri Carpenter

Randy Reitz

Overview

• High-level Goals

• More Detailed Map

• Timelines

High-Level Goals

1. Layered, modular architecture

This will de-mystify detector writing!

2. Exemptions

3. Code maintainability/deployability

4. Unit tests

5. Eliminate Zope in favor of less heavyweight
web tools

6. Documentation

Goal 1: Layered, modular architecture

• Published list of web services provided by TIssue (“we”, SOAP
service)

– Event_Factory methods
– Exemption methods
– BlockEngine methods
– … in fact, ALL access to DB through this SOAP service
– Clients should not ever do direct SQL (“select…”, “insert…”, etc.)

• Many customers (“they”)
– Detectors
– Scanners, inventory refreshers, report writers
– CLI access (sooner)
– GUI access (later)

• All detectors use the same generic methods
– No more need for a new server for each detector!

• Detector-specific information handled via configuration
– Keyword/value configuration parameters

Goal 1 (cont’d)

• De-Mystify Detector Writing

– Detector (customer):

• determines when an “event” has occurred

• knows the specific event “details”

• sends the event information via one web service call

– Server:

• Handles “event” based on:
– Detector configuration

– Event details

– Exemption information

Goal 2: Exemptions

• Exemption type determines who is interested
– Etype SCAN: scanners

• Replaces hard-coded lists inside of multiple scripts

– Etype ISSUE: event creation
• Replaces hard-coded lists inside of multiple scripts

– Etype WHITELIST: blocking engine
• Becomes data-source for blocking engine whitelist file

(maintained separately as a fail-safe)

• Common data source for all exemptions – now
we can generate reports!

Goal 2 (cont’d)

• Common exemption request interface

• Add “work-flow” for e-signature approval

– Re-use existing plone mechanism unless another
work-flow engine becomes available

Goal 3: Code
maintainability/deployability

• Separately deployable component packages

– Not one great big steaming pile!

• Clients will not need Zope, postgres_client,
oracle_client, mod_python, etc. in order to write a
detector!

• Developers will not need to release new scanners when
DTML files need updating

– Use ids_shutil release scripts (see documentation)

http://appora.fnal.gov/ids_shutil/

Goal 4: Unit Tests

• Include unit-tests in subcomponents

• “make test” becomes part of standard release
scripts

Goal 5: Eliminate Zope

• Zope is complicated and heavy

• It would be nice to migrate existing Zope-
based pages into django pages

• Not a high priority

Goal 6: Documentation

• Use py_cmd_util for consistent self-
documenting commandline/python interface

• Code the CLI, test the CLI; later, call the
implementation from the GUI

• Use pydoc or other documentation-generators
for other documentation

• Use “good programming practices” to
document the code!

More Detailed Map
1. Package re-organization
2. TIssue v2 DB design (including exemptions)
3. Object-oriented breakdown of components
4. Tissue DB server (web service access to DB)
5. Proof-of-concept Detectors (customer)
6. Blocking Engine
7. Event sweeper (email reminders, auto-close, etc.)
8. Detector configuration interface (GUI)
9. Issue configuration interface (GUI)
10. Exemption system (request GUI, approval GUI,

creation GUI)

1) Package Re-organization

• Lots of small self-contained packages that can be
separately maintained/deployed
– Do ONE thing and DO IT WELL!

• Ups table files denote dependencies between
products
– TIssue_config
– TIssue_common
– TIssue_event_factory
– TIssue_ddl
– TIssue_monitoring_tools
– TIssue_????

2) TIssue v2 DB Design:

• Use modeling tools (DeZign)

• Changes for detector configuration (to eliminate
detector-specific “out-of-band” communication)

• Changes for exemption persistent store

• Changes to allow for mac-based and system-based
event creation (currently only ip-based events)

• Optimizations, reduction of miscomp-duplication
– Question: does Tissue v2 require a separate cache of

miscomp-duplicated information, or can it STOP when
miscomp is unavailable? Or something in between (queue
event until miscomp becomes available?)

3) Object-oriented breakdown of
components

• Think about the interactions

• Use a design tool

• Recognize and use design patterns

• Get some expert help!

4) TISsue DB server (web service)

• Single point of communication for customers

• Initial release must include:
– Event_Factory methods

– “read exemption” methods for scanners, blocking engine

• Need to design authentication/authorization
mechanism
– Would like some help setting this up!

• Requires TIssue v2 DB design

• Requires new remediation page GUI
– Can be “cloned” from existing page

5) Proof-of-concept Detectors

• Recode 2 or more existing detectors as proof-
of-concept while developing server

– Linux Baseline

– Sms_aged_pwd_detector

– Vscan

– netVer

– FCIRT event injector

6) Blocking Engine

• Recode existing blocking engine using new DB
interface

• No direct access to DB; instead, call methods
from the Tissue dbserver for
“get_machines_to_*un+_block” and
“update_machine_state”, etc.

• This will decouple the blocking engine from
the Tissue implementation and db schema

7) Event Sweeper

• Event sweeper handles the scheduling of:

– Email reminders

– Auto-close of events

– Blocking engine requests

• Recode existing interface to use new DB
interface

• This will decouple the event sweeper from the
TIssue implementation and db schema

8) Detector configuration interface

• Email_template

• From_address, CC_address, ReplyTo_address

• Authorized detector admins (persons allowed
to modify detector configuration)

• Authorized detector machines (machines
allowed to communicate with event_factory
for this detector type)

• Detector-specific keywords, default values

• ??? (to be determined)

9) Issue configuration interface

• Associated detector

• Severity

• Block? (block_delay)

• Send email? (reminder frequency)

• Associated with which (if any) net services?

• Issue-specific keywords

• ??? (to be determined)

10) Exemption System

• Exemption Request interface

– Requested exemption type?

– Requested by whom?

– Requested for which system/cluster?

– Reason?

– Duration?

7) Exemption System (cont’d)

• Exemption Request Approval

– Needs “political” decision of who needs to
approve (possibly depending on exemption type)

– Re-use alphaflow infrastructure unless other
generic workflow engine becomes available

– Role-based, not person-based!

7) Exemption System (cont’d)

• Exemption Creation

– Interface to create exemptions, possibly pre-
populated with data from an exemption request

• Exemption Renewal Process

– Email reminders/notification

– Re-approval?

• Reporting Tools

Timeline

• March 2010:
– DB, OO design review, assistance (hopefully)

• Early April 2010:
– TIssue v2 db design (DDL)

• April – July 2010:
– TIssue DB web service

• Assistance needed for authentication issues
• Include “read exemptions” interface for scanners, whitelist

– 2+ detectors using TIssue DB web service
– Blocking Engine using TIssue DB web service
– Event sweeper using Tissue DB web service
– (expert cli interface for detector config, issue config, exemption

config; i.e., NO GUI!)

• End of July 2010: Production release Tissue v2 (no GUI)
– Selected (probably 2) detectors

Timeline (cont’d)

• Later:
– Migrate more detectors

• Recode existing inventory refreshers to use new tools

– Add GUI interfaces:
• Detector configuration interface
• Issue configuration interface
• Exemption request/approval/creation interface

• And monitoring tools…NOT zope-based
• And reporting tools and sparklies… NOT zope-

based
• And eliminate Zope…

