
Using ArborZ

Adam J. Sypniewski (ajsyp@umich.edu) and David W. Gerdes
University of Michigan

December 17, 2012

1 Obtaining and Installing ArborZ

The current ArborZ release can be found as a tarball (arborz.tar.gz) in the ”Files” section of the ArborZ
project wiki:

https://cdcvs.fnal.gov/redmine/projects/arborz

ArborZ has no dependencies, making compiling and installing so simple that we currently do not have a
makefile. To build ArborZ, we first extract the tarball and move into the newly extracted directory:

> tar -xvzf arborz.tar.gz && cd arborz

We compile ArborZ directly:
> g++ -o arborz *.cpp

Upon successful completion of this command, the executable “arborz” is created in the arborz directory.
The source files can be deleted.

2 Using ArborZ

ArborZ uses boosted decision trees (BDTs) to determine the empirical mapping from observables (such as
magnitudes or colors) to redshift. Like most machine-learning algorithms, ArborZ determines this mapping
during a “training” step. The resulting mapping can then be applied in subsequent “evaluation” steps (also
called “target” steps) to produce photometric redshift estimates for a galaxy catalog. We discuss the training
and evaluation steps separately.

2.1 Training

2.1.1 Basic Usage

The simplest form for training ArborZ is:
./arborz --state STATE FILE --train TRAIN FILE.tsv COLUMN SPECIFICATION

Here, STATE FILE is the name of the “state file” which is created during training. The state file contains
the empirical mapping from observable space to redshift space. It is needed during the evaluation phase to
produce photometric redshift estimates. Note that ArborZ will silently overwrite any existing state files of
the same name, so be careful.

The TRAIN FILE.tsv argument is the name of file which contains the training data for ArborZ. It should
be a tab-spaced value (TSV) file which can contain an arbitrary number of header lines. Although this
file can contain many columns (and types) of data—even data not used for training—it must contain the
training observables (numeric values only) and the true redshift for each galaxy entry. Any lines encountered
in this file which cannot be properly parsed, or which contain invalid redshifts1, are silently dropped from
the training process.

COLUMN SPECIFICATION indicates which columns of the training file should be used during training. This
specification consists of a sequence of zero-based column indices, which can be a range (specified using the
dash), a single number, or a combination of both (separated by a comma). The last column specified is
assumed to be the true redshift. Note that there should be no spaces in the column specification.

1An invalid redshift z is defined as a redshift where z ≤ 0 or z ≥ 20.

1



For example, if the training file’s first five columns are training observables (such as magnitudes) and
the sixth column is the redshift column, then COLUMN SPECIFICATION could be: 0-5. If the redshift column
is the first column and you wish to train on the values of the second, fourth, fifth, and sixth columns,
COLUMN SPECIFICATION could be either 1,3-5,0 or 1,3,4,5,0 (since the column indices are zero-based).

2.1.2 Advanced Usage

There are also several more advanced options which can be specified during training. The options, their
descriptions, and default values (if they aren’t specified) are listed here.

• Header Lines. If the training file contains header lines, you can tell ArborZ to skip these lines using
the skip option: --skip NUM LINES, where NUM LINES is the number of non-data lines at the beginning
of the file. Default value: 0.

• Binning Options. ArborZ partitions the training set into true redshift bins and it uses these same
bins during the evaluation phase to construct its output PDF and photometric redshift estimates.
The binning options can be specified with: --bin BIN METHOD NUM BINS. Here, NUM BINS indicates the
number of bins to use.2 BIN METHOD tells ArborZ how to choose the bin edges, and can be either fixed,
to indicate that “NUM BINS” bins of equal width should be used, or variable, to indicate that bin edges
should be chosen so that every bin has the same number of galaxies in it. Default value: 64 fixed-width
bins.

• Binning File. This option can be used to tell ArborZ to output the bin edges it chooses for training
to a file. Generally, it is a good idea to specify this option, as knowing the bin edges explicitly is often
useful for post-evaluation analysis. It can be specified with: --write-bins BIN FILE, where BIN FILE

is the name of the file to write to. This file will have a single, float-point value per line, and there will
be NUM BINS + 1 lines total (one for each bin edge, including the lowest and highest edges). Default:
None (no binning file is written).

• Maximum Redshift. By default, ArborZ uses the full redshift range of the training file for construct
its bins. Thus, the lowest bin edge is equal to the redshift of the lowest-redshift training galaxy, and the
highest bin edge is equal to the redshift of the highest-redshift training galaxy. If you want to explicitly
change the redshift of the highest bin edge, you can use: --max MAX REDSHIFT, where MAX REDSHIFT is
the highest redshift bin edge. Note that this is not equivalent to applying a training cut, since galaxies
with redshifts higher than MAX REDSHIFT may still be used as “background” galaxies during training.
Default: Highest redshift in training set.

• Expected Resolution. The expected photometric redshift resolution σres for the training set. This
is used during training to determine—for a given redshift bin—which galaxies should be considered
“signal” and which should considered “background” when presented to that bin’s BDT classifier. Ar-
borZ considers all training objects which fall into a given redshift bin “signal” galaxies, and all training
objects whose redshifts fall 3σres beyond the edges of the same bin “background” objects. As a rule
of thumb, when using Nbins redshift bins from z = 0 to z = zmax, σres should be chosen such that
Nbinsσres ≈ zmax. Default value: 0.02.

2.2 Evaluation

2.2.1 Basic Usage

The simplest form for evaluating photometric redshifts for a given galaxy catalog is:
./arborz --state STATE FILE --eval TARGET FILE.tsv OUTPUT FILE.tsv COLUMN SPECIFICATION

Here, STATE FILE is an ArborZ state file produced by training. If you are content with the training
parameters used to create the state file, you can use the same state file on many evaluations; that is, you do
not need to re-train ArborZ multiple times if you intend to use the same training parameters multiple times.

TARGET FILE.tsv is a TSV file containing the galaxy catalog to produce photometric redshifts for. Its
format is similar to the input training file from the training stage, but it does not need to have any redshift

2We have had good results with as few as 32 bins and as many as 100.

2



information present. The observable quantities used in training must be present in this file. The target file
can also contain non-data header lines at the top, and lines which cannot be parsed are silently dropped.

COLUMN SPECIFICATION is the sequence of zero-based column indices in the target file to use in evaluation.
The column specification follows the same form as from the training step, although the redshift column need
not be specified; however, if you are simply performing validation tests and have true redshifts available, you
can again have the last column be the redshift column from the target set, and ArborZ will copy this column
into the output file for your convenience.

Note that if the column ordering/indices in the target file are different from those in the training file,
you will need to change the column specification appropriately. In other words, the first column you specify
in training must correspond to the first column specified in evaluation , although the actual indices in the
training and evaluation files can be different. For example, if you training on g-band magnitudes (say, column
index 4) and r-band magnitudes (say, column index 5), then a possible value for COLUMN SPECIFICATION

during training could be 4-5,A (where A is the index of the redshift column). Now, if in evaluation g-band
magnitudes are in column 3 and r-band magnitudes are in column 10, you would set COLUMN SPECIFICATION

to 3,10,B (where B is the index of the redshift column, although it can be omitted). The important take-away
is that g-band magnitudes were specified before r-band magnitudes for both training and evaluation, even
through the column indices are different.

OUTPUT FILE.tsv is the file into which the ArborZ photometric redshift estimates are written. The
ordering of results corresponds exactly with the ordering in the input target file (although invalid lines from
the target file get dropped). It has no header lines, and will always have at least four columns, which
correspond to zphot, σz, ppeak, and zspec. zphot is the best-estimate photometric redshift for that galaxy, and
σz is the error on that estimate. ppeak is a measure of ArborZ’s confidence in the photo-z estimate. It is
always between 0 and 1 inclusive (with 1 indicating strong confidence) and is correlated with σz (see Gerdes
et al, 2010 for more details). If a true redshift column was indicated in the COLUMN SPECIFICATION during
evaluation, then zspec is set to the redshift value indicated in the target file. If a true redshift column was
not specified, then zspec = 0 for all galaxies.

2.2.2 Advanced Usage

There are advanced options which can be specified during evaluation. The options, their descriptions, and
default values (if they aren’t specified) are listed here.

• Header Lines. If the training file contains header lines, you can tell ArborZ to skip these lines using
the skip option: --skip NUM LINES, where NUM LINES is the number of non-data lines at the beginning
of the file. Default value: 0.

• PDF Production. ArborZ produces a full redshift probability distribution p(z) for each target galaxy
during evaluation. This p(z) is a PDF histogram3 whose bin edges are the same as those used in
training. This p(z) production is one of ArborZ’s strong suites. It is not always desirable, however, to
write this PDF to the output file, since there are Nbins additional ASCII floats needed for each target
galaxy, which can make for large output files. To enable PDF histogram outputs, use --hist. This
will result in an output file with 4 + Nbins columns, where the first four are the four described in the
previous section, and the last Nbins columns the PDF. Default: do not write histograms to file.

2.3 Additional Usage

Although it is often desirable to separate the training and evaluation steps (so that the state file can be
generated once but used many times), ArborZ can also train and evaluate in a single command. To do this,
simply specify both the --train and --eval options in the command line. The --skip option can now take
two values: --skip NUM LINES TRAIN NUM LINES TARGET, where NUM LINES TRAIN is the number of non-
data lines to skip in the training file, and NUM LINES TARGET is the number of non-data lines to skip in the
target file. If only one argument is given—for example, --skip NUM LINES—then NUM LINES is considered
the number of non-data lines to skip in both training and evaluation files.

If you choose to execute both training and evaluation in one step, then it is possible to not create a state
file (i.e., you are allowed to not specify --state at the command line). However, we discourage this usage,

3By PDF histogram we mean one in which the area of a bin, rather than a height, indicates the probability in that bin.

3



since, in principle, it is no longer possible to recover the observable–redshift mapping if the state file is lost
(or not created).

2.4 Quick Start

Here is a quick example of a typical training command:
./arborz --state TRAIN.state --train TRAIN.tsv 0-5 --bin fixed 32 --write-bin TRAIN.bin --skip

1 --max 1.5 --res 0.04

And here is a typical evaluation step:
./arborz --state TRAIN.state --eval TARGET.tsv RESULTS.tsv 0-5 --hist --skip 1

3 Additional Information

We typically use magnitudes with ArborZ. Of course, there is no reason other information cannot be used,
and we sometimes use additional information. Feel free to explore the importance and effect of different
observables on the output of ArborZ.

4 FITS Support

As of version 2.01, ArborZ now supports reading and writing FITS files via the CFITSIO library. Support
is still experimental, so bear with us as we perfect this.

4.1 Building

ArborZ now support reading and writing FITS files via the CFITSIO library. In order to build ArborZ with
FITS support, first download and install CFITSIO. The command to build ArborZ is now slightly longer:

> g++ -o arborz *.cpp -I/usr/local/include -L/usr/local/lib -lcfitsio -DFITS

The -L and -I options may be different (or not necessary at all), depending on the setup of your CFITSIO
installation. For reference, the -I flag is the directory containing fitsio.h and -L is the directory containing
libcfitsio.a.

4.2 Usage

To use FITS files, simply ignore the COLUMN SPECIFICATION part of the --train and --eval options. Instead,
a new option is introduced: --fits. Without any additional arguments to the --fits flag, all available
columns of the input FITS are printed. Thus, to list all of the FITS columns, data types, and lengths (if the
column is a vector), try this:

./arborz --train FILE.FITS --fits

Specify the actual columns used in training or evaluation by comma-spacing the column names (case-
insensitive). So if your FITS file has MAG G, MAG R, and TRUE Z columns, use:

--fits MAG G,MAG R,TRUE Z

Be sure not to put any spaces between the column names. Just as with TSV files, the last column specified
is interpreted as the true redshift column (which may be omitted during evaluation).

ArborZ will properly handle FITS columns which are vectors. If you wish to use the entire vector
column, you don’t need to do anything special; simply use the column name as you would any other column.
If, however, you wish to use parts of the vector, you can do so by placing COLUMN SPECIFCATION-like entries
enclosed in square brackets at the end of the column name (except that FITS indices are one-based). So if
you have a column named DATA which is a 5-vector, you can use all five columns like this:

--fits DATA

If you do this while training, the last component of each DATA entry is interpreted as the true redshift. If
you wish to use only the first three components of DATA, you can do so in many ways:

--fits DATA[1,2,3]

--fits DATA[1],DATA[2],DATA[3]

--fits DATA[1-3]

--fits DATA[1-2,3]

4



--fits DATA[1-2],DATA[3]

The output FITS file produced during evaluation will have at least three columns: ZPHOT, ZPHOTERR, and
PEAKPROB. If you specified a true redshift during evaluation, it will be listed in the ZTRUE column. If you
used the --hist option to output the PDF histogram, it will be in the P OF Z column (a vector column).

4.3 Limitations

Limitations of ArborZ’s current FITS support:

• If the --fits option is used, then you must split the training and evaluation steps into two discrete
commands. You cannot specify both together, which would otherwise allow you to kill two birds with
one command, as well as allow you to skip production of the state file.

• You cannot mix file types during evaluation. This means that the input and output files given to
--eval must both be FITS or both be TSV.

• FITS columns must be of the TDOUBLE type, although they can be TDOUBLE vectors.

Keep in mind that ArborZ’s state files are still universal and not bound to any file type. So you can
produce a state file by training on TSV data and then use that state file to evaluate against FITS data.

4.4 Quick Start

Here is a quick example of a typical FITS-based training command:
./arborz --state TRAIN.state --train TRAIN.fits --fits MAG[1-5],ZSPEC --bin fixed 32 --write-bin

TRAIN.bin --skip 1 --max 1.5 --res 0.04

And here is a typical evaluation step:
./arborz --state TRAIN.state --eval TARGET.fits RESULTS.fits --fits MAG[1-5],ZSPEC --hist

--skip 1

5


