
Speeding up the Hough Transform
Ben Carls

1

Status of Hough transform
•  Effective at finding lines, yet very slow
•  Fortunately, there are many avenues for potential

improvements
•  The biggest slowdown in the original HoughLineAlg

resulted from refilling the accumulator from scratch after
every line was found

•  First optimization came from subtracting points from the
original accumulator after each point was found

2 For this event, took processing time from 37 minutes to 6
minutes, even running at double the θ resolution

Going even faster with a PPHT
•  Early work using a Progressive Probabilistic Hough

Transform (PPHT) has further increased speed
•  The algorithm is fairly simple:

3

1.  Randomly select one hit, remove it from the image
2.  Check if the highest peak in the accumulator modified

by the pixel is higher than a threshold cut; if not, go to
step 1

3.  Add points along the line, removing them from the
image

4.  Remove hits from the accumulator from the line that
was found

5.  Repeat step 1 if the image is not yet empty

J. Matas et al., Robust Detection of Lines Using the Progressive Probabilistic Hough
Transform, Computer Vision and Image Understanding, Volume 78, Issue 1, April 2000,
Pages 119–137

PPHT performance

10,000 θ bins (6 min.)

4
20,000 θ bins (1 min.)

5

Aim of the improvements

•  Want to first apply a clustering algorithm
(fuzzy clustering) for a rough first pass

•  Then apply the PPHT to construct
showers and tracks

•  The PPHT is only implemented in the
HoughClusAlg class, usable by fuzzy
clustering code only, could be
implemented in HoughLineFinder

Dealing with fake lines

•  The Hough line finders tend to create lines
out of steep, uncorrelated hits

6

Dealing with fake lines

•  Strategy walks along the line and
searches for missing hits

•  If too many missing hits are found, the line
is vetoed

7

Dealing with fake lines
•  Still needs some slight tuning,

occasionally rejects good lines
•  Most of the lines in this shower were

rejected

8

Other modifications

•  A few of the functions in the HoughClusAlg
and the HoughLineAlg classes were
shared

•  Created a base class HoughBaseAlg for
HoughClusAlg and HoughLineAlg to
inherit from

•  Everything is in the repository

9

Hough transform

y = −
cosθ
sinθ

"

#
$

%

&
'x +

r
sinθ
"

#
$

%

&
'

Use the parameterization:

Fill a matrix (accumulator) in (r,θ)
space with:

r(θ) = x0 ⋅cosθ + y0 ⋅sinθ

We then search the
accumulator for the most
populated bin, rather
computationally demanding

The accumulator, binned 10

The older method of dealing with Hough lines in electron showers

Hough line finder
identifies lines in electron
showers, need to veto

Examining area around
lines and checking
isolation, applying a cut

This cut is applied after
the lines have been
merged

11

Showers with Hough lines
Hough line finder very
effective at finding lines in
showers

Now aiming to capitalize
on this, merging Hough
lines together to construct
showers

Merge Hough lines using
the distance between the
line segments and angle
between slopes < 20°

d

d

d

d

12

13

The fuzzy cluster remnants
The issue remains with
what to do with the left
over fuzzy cluster points

Currently merging these
points into the nearest
Hough line segment
using:

Goal is to give longer line
segments more weight

dweighted =
distance point to line segment

length of line segment

14

15

Overview of the algorithm

Run fuzzy clustering
Check Xie-Beni index,
determine number of
clusters

Merge nearby fuzzy
clusters

Run Hough line finder Merge Hough lines Merge remaining
hits with
Hough lines

16

Fuzzy and Hough line clustering Cluster cheater

17

Fuzzy and Hough line clustering Cluster cheater

18

Fuzzy and Hough line clustering Cluster cheater

19

Fuzzy and Hough line clustering Cluster cheater

20

Fuzzy and Hough line clustering Cluster cheater

21

Hough transform performance

•  Quality Hough lines are very dependent on
resolution in the accumulator

•  Low resolution (fast) has a higher fake rate
than a higher resolution (slow)

•  Ideally would run at low resolution, with
fake veto

22

Hough transform performance

1,000 θ bins (2 min.)

10,000 θ bins (6 min.)

Compare to 37 minutes (5,000 θ bins) for original Hough transform code 23

Next steps

•  Finish optimization
•  Streamline code, might be too many

unnecessary classes and functions
•  Examine more events (only CCQE so far)

to improve robustness
•  Finalize the needed modules

24

Back up

25

Where clustering was

•  Want to finalize clustering occurring right
after hit reconstruction

•  Lots of tools already available (e.g.
DBSCAN, Hough line finder, and End
Point Finder)

•  Goal is to bring them all together

26

The basic algorithm

The objective function we are trying to minimize:

Jm = uij
m xi − cj

j=1

C

∑
i=1

N

∑
2

27

Does not work with single cluster events by definition,
we’ll get to that later

Number of clusters

•  The number of clusters needs to be given as an
input

•  The Xie-Beni index gives us a way to evaluate
how well a certain cluster number works

28

There is a problem with the Xie-Beni Index though

29

Look to merge clusters sing Euclidean distance

1.  Look for point in cluster i closest to centroid in cluster j
2.  Compare that point to the point in the cluster j closest

to centroid of cluster i
3.  Merge the clusters

30

Now look for Hough lines and expand them into clusters

Search for Hough lines in
the already identified
fuzzy clusters

Hough line finder was
sped up to make this
practical

An issue remains with
needing to merge the
Hough lines though

31

Merging the Hough lines

Pick a line and check at
its end points

If a nearby line is found,
check the angle between
the slopes

If the angle between the
slopes is < 30°, merge
the lines

32

