OPTICAL DETECTOR
GEOMETRY /
INFRASTRUCTURE

Ben Jones,
MIT

B
Two Updates Today:

- 1. Ben Jones, Optical Detector Infrastructure +
Geometry

- 2. Christie Chiu, Optical Detector
Signal Processing + Hit Finding

Renaming Process

(v

(v

Brian requested that everything previously called “PMT " be
called “OpDet " to better accommodate non-PMT based optical
detectors

This change was made to LArG4, EventGenerator, Simulation,
PhotonPropagation, OpticalDetector, Geometry.

Sorry for the few leftover loose ends which caused problems /
compatibility issues.

MuNuclearSplittingProcessXSecBias.cxx 12.1 kB 1936 9 months Brian Rebel changes to make u
MuNuclearSplittingProcessXSecBias.h 2.8 kB 1936 9 months Brian Rebel changes to make u
OpBoundaryProcessSimple.cxx 9.1 kB 1936 9 months Brian Rebel changes to make u
OpBoundaryProcessSimple.hh 5.7 kB 1936 9 months Brian Rebel changes to make u
OpDetLookup.cxx 3.2 kB 2834 5 days Benjamin Jones Tie the LArG4 OpD«
OpDetLookup.h 2 kB 2834 5 days Benjamin Jones Tie the LArG4 OpD:«
OpDetReadoutGeometry.cxx 4.4 kB 2834 5 days Benjamin Jones Tie the LArG4 OpD:
OpDetReadoutGeometry.h 1.7 kB 2825 5 days Benjamin Jones More variable name
OpDetSensitiveDetector.cxx 2.4 kB 2825 5 days Benjamin Jones More variable name
OpDetSensitiveDetector.h 2 kB 2825 5 days Benjamin Jones More variable name¢
OpticalPhysics.cxx 7 kB 1936 9 months Brian Rebel changes to make u
OpticalPhysics.hh 3.1 kB 1936 9 months Brian Rebel changes to make u
ParticleListAction.cxx 15.9 kB 2825 5 days Benjamin Jones More variable name

Particlel istAction b 36KB pea3 = i Brian Rebel id cod |

New Base Classes

- Two new base classes for PMT (OpDet) signal processing
will be described in Christies talk:

- raw::OpDetPulse

- recob::OpHit

B
Geometry Changes

- In previous implementation, LArG4 found sensitive elements by specified
name in gdml file, and gave each an ID.

- This meant that volumes and ID’s were not accessible outside LArG4.

- This now globalized, in the sense that Geometry now controls ID assignments
and knows about OpDet positioning

- The mapping between Geometry and LArG4 objects is handled by the LArG4/

OpDetLookup object.
m - SimPhotons
Simulation Data Product

OpDetSensitiveDetector ~ (previousely called PMTHit)

S
geo::0OpDetGeo

- OpDets now form a part of the geometry —
tree along with TPCs, Cryostats, etc

PlaneGeo

PlaneGeo

TPCGeo

PlaneGeo

TPCGeo

CryostatGeo

CryostatGeo

OpDetGeo

OpDetGeo

B
Labeling Convention

- OpDets exist within a given cryostat
- Similarly to Wires, every OpDet has a unique ID, OpChannel
- Each also has an address (c,0), Cryostat (o to N_cryo) and OpDet (0 to N_opdet)

- Methods added to geometry to facilitate conversion between the two schemes, like
for wires and planes.

- Everything stored in the event is indexed by OpChannel only.

root / trunk / Geometry / Geometry.h

L7

275 // Convert OpDet, Cryo into OpChannel

276 int OpDetCryoToOpChannel (unsigned int o, unsigned int c=0);
277

278 // Convert OpChannel into Cryo and OpDet

279 void OpChannelToCryoOpDet (unsigned int OpChannel, unsigned int& o, unsigned int & c);
280

PhotonVisibilityService

- Service added to PhotonPropagation package to facilitate optical
reconstruction algorithms

- Main function: Given a point xyz in the detector, how likely is it that
1PE produced there will be seen at each OpDet?

- Two modes of operation :

- 1) Simple — 1/r*2 and solid angle to opdet surface
- (no reflections, etc)

- 2) Library — use fastsim library (tbi)
- (full reflections, scattering, etc accounted for. But requires filled library — not yet

available for MicroBooNE)
5 (' OpDet1

(' OpDet 2

xyz

Simple Mode Being Implemented

class PhotonVisibilityService {
public:

PhotonVisibilityService(fhicl::ParameterSet const& pset, art::ActivityRegistry& req);
~PhotonVisibilityService();

void reconfigure(fhicl::ParameterSet const& p);

void SetvVisibilityModel(int model) { fVisModel = model; }
int GetVisibilityModel() { return fvisModel; }

double GetQuenchingFactor(double dQdx);

double DistanceToOpDet (double* xyz, int OpbDet):;
double SolidAngleFactor(double* xyz, int OpDet);
double GetVisibility(double* xyz, int OpbDet);

std: :vector<double> GetAllVisibilities(double* xyz);

TrackTimeAssoc

- Analyzer in the OpticalDetector package
- Make a quick hypothesis for the light from each track in the event per PMT

- Step along a bezier track in uniform intervals, querying the visibility at each point
and multiplying by local dQdx.

- Light production can be dropped by quenching function. Visibility and quenching
are both controlled by the PhotonVisibilityService

A

A

A

Geometrical TO Finding

- 1: Make hypotheses of relative amount of light per PMT for each track
- 2: Find subevents by matching large PMT signals in time
- 3: Likelihood fit to match track to light hypothesis, and find TO.

OpDet1 OpDet2 OpDet3

/\\ ,

2z

Where are we?

- 1: Make hypotheses of relative amount of light per PMT for each track
- Well under way from Ben

- 2: Find subevents by matching PMT signals in time
- Well under way from Christie

- 3: Likelihood fit to match track to light hypothesis, and find TO.
- The next step, but we do not expect big difficulties

- 4: Figure out what to do with TO

- Reconstructed timing objects? Corrected coordinates for off-beam tracks?
Michel finding algorithm? Etc...

