Here are the main segments of the glidein cleanup code. They are basically the same in v2+ and v3+. The only difference is that I removed the unused code in the v3+ branch and made the remaining methods consistent.

At the end of each entry iteration, the factory entry does cleanup if no work is done:

glideFactoryLib.sanitizeGlideinsSimple(condorQ)

Work is where either glideins were submitted or cleanup was done per frontend request of that entry. The condorQ contains all the glideins for that entry (done by schedd since that is defined in the config). This query is only done once at the beginning of the iteration and doesn't account for any work done during the iteration.

glideFactoryLib.sanitizeGlideinsSimple()
	- removes glideins that have been idle for too long
hash_statusStale(el)==[1,1]
- removes glideins that have been in the running state too long
hash_statusStale(el)==[2,1]
- removes held glideins that are unrecoverable
el["JobStatus"]==5 and isGlideinUnrecoverable(el)
	- releases held glideins
el["JobStatus"]==5 and not isGlideinUnrecoverable(el)

isGlideinUnrecoverable()
unrecoverableCodes = {2: [0, 2, 4, 5, 7, 8, 9, 10, 14, 17,
 22, 27, 28, 31, 37, 47, 48,
 72, 76, 79, 81, 86, 87,
 121, 122]}
if jobInfo.has_key('HoldReasonCode') and jobInfo.has_key('HoldReasonSubCode'):
 code = jobInfo['HoldReasonCode']
 subCode = jobInfo['HoldReasonSubCode']
 if (unrecoverableCodes.has_key(code) and (subCode in unrecoverableCodes[code])):
 unrecoverable = True

**** there is a sanitizeGlideins() but it is never called anywhere (as well as the some of the functions it method calls). I've simplified this in v3 so there is only one set of methods being used.

If work is needed (we call keepIdleGlideins()), then the following is executed:

If there is work to do, first it checks that it has not exceeded the max held glideins. If it has, it calls

sanitizeGlideinsSimple(condorQ)

where condorQ is the glideins for this entry for a specific proxy. It skips any other submission or cleanup and returns that work was done so the method is not called again in the above scenario.
NOTE: I’m not sure why we wouldn’t call again since the condorQ’s are different: the scenario above is for the entire schedd and this one is for just that credential-specific request. This call is also not cleaning up the queue per the frontend request.

If glideins are needed, the total number of running, held and idle are counted. What needs to be submitted is calculated and if we already have enough (can't add more idle glideins), then it calls
clean_glidein_queue(remove_excess, glidein_totals, condorq, req_min_idle, req_max_glideins, frontend_name)
where condorq is the glideins for that entry and credential, remove_excess is from the frontend request:
if work[work_key]['requests'].has_key('RemoveExcess'):
 remove_excess=work[work_key]['requests']['RemoveExcess']
else:
 remove_excess='NO'
and the idle and max_glideins are from the request. The frontend name is needed to look up the limits defined in the factory config.

The clean_glidein_queue() method is long and convoluted. First it determines whether or not to remove excess idle or running and whether or not to remove excess by default (the wait parameter, false means do not remove excess by default).
remove_excess_wait = False
remove_excess_idle = False
remove_excess_running = False
if remove_excess == 'WAIT':
 remove_excess_wait = True
elif remove_excess == 'IDLE':
 remove_excess_wait = True
 remove_excess_idle = True
 elif remove_excess == 'ALL':
 remove_excess_wait = True
 remove_excess_idle = True
 remove_excess_running = True
 else:
 if remove_excess != 'NO':
 log_files.logActivity("Unknown RemoveExcess provided in the request '%s', assuming 'NO'" % remove_excess)

Then it removes glideins for the following conditions:

1) Do we have too many glideins?
if (((remove_excess_wait or remove_excess_idle) and
(sec_class_idle > req_min_idle)) or
(remove_excess_running and
((req_max_glideins != None) and #make sure there is a max
((sec_class_running + sec_class_idle) > req_max_glideins)))):

1a) Do we have more running than we should?
remove_nr = sec_class_idle - req_min_idle
if (remove_excess_running and
((req_max_glideins != None) and #make sure there is a max
((sec_class_running + sec_class_idle) > req_max_glideins))):
 remove_all_nr = (sec_class_running + sec_class_idle) - req_max_glideins
 if remove_all_nr > remove_nr:
 # if we are past max_run, then min_idle does not make sense to start with
 remove_nr = remove_all_nr

1b) Remove idle unsubmitted first. Exit saying work done.
idle_list = extractIdleUnsubmitted(condorQ)
if remove_excess_wait and (len(idle_list) > 0):
 # remove unsubmitted first, if any
 if len(idle_list) > remove_nr:
 idle_list = idle_list[:remove_nr] #shorten
 stat_str = "min_idle=%i, idle=%i, unsubmitted=%i" % (req_min_idle, sec_class_idle, len(idle_list))
 log_files.logActivity("Too many glideins: %s" % stat_str)
 log_files.logActivity("Removing %i unsubmitted idle glideins" % len(idle_list))
 if len(idle_list)>0:
 removeGlideins(condorQ.schedd_name, idle_list)
 return 1 # stop here... the others will be retried in next round, if needed

1c) Remove idle queued next. Exit saying work done.
idle_list = extractIdleQueued(condorQ)
if remove_excess_idle and (len(idle_list) > 0):
 # no unsubmitted, go for all the others now
 if len(idle_list) > remove_nr:
 idle_list = idle_list[:remove_nr] #shorten
 stat_str = "min_idle=%i, idle=%i, unsubmitted=%i" % (req_min_idle, sec_class_idle, 0)
 log_files.logActivity("Too many glideins: %s" % stat_str)
 log_files.logActivity("Removing %i idle glideins" % len(idle_list))
 if len(idle_list)>0:
 removeGlideins(condorQ.schedd_name, idle_list)
 return 1 # exit, even if no submitted

1d) Remove running next. We've already tried to remove everything else, we have to remove what we can. The method
extractRunSimple(condorQ)
finds all jobs with ["JobStatus"]==2
 if remove_excess_running:
 # no idle left, remove anything you can
stat_str = "idle=%i, running=%i, max_running=%i" % (sec_class_idle, sec_class_running, req_max_glideins)
log_files.logActivity("Too many glideins: %s" % stat_str)

run_list = extractRunSimple(condorQ)
if len(run_list) > remove_nr:
 run_list = run_list[:remove_nr] #shorten
log_files.logActivity("Removing %i running glideins" % len(run_list))

rm_list = run_list

1d-1) Lastly try to remove held (which are considered "running" by the FE). The following two methods are used to find held glideins:
extractUnrecoverableHeldSimple(condorQ) :: el["JobStatus"]==5 and isGlideinUnrecoverable(el))
extractRecoverableHeldSimple(condorQ) :: ["JobStatus"]==5 and not isGlideinUnrecoverable(el)
If we remove glideins, return that work was done.

Remove Held as well
No reason to keep them alive if we are about to kill running glideins anyhow
log_files.logActivity("No glideins requested.")
Check if there are held glideins that are not recoverable
unrecoverable_held_list = extractUnrecoverableHeldSimple(condorQ)
if len(unrecoverable_held_list) > 0:
 log_files.logActivity("Removing %i unrecoverable held glideins" % len(unrecoverable_held_list))
 rm_list += unrecoverable_held_list

Check if there are held glideins
held_list = extractRecoverableHeldSimple(condorQ)
if len(held_list) > 0:
 log_files.logActivity("Removing %i held glideins" % len(held_list))
 rm_list += held_list

if len(rm_list)>0:
 removeGlideins(condorQ.schedd_name, rm_list)
 return 1 # exit, even if no submitted

2) If we don't have “too many glideins”, the frontend may say to remove all (max_glideins = total, not just running) and we may still have held. Here is an additional step to remove held. Same logic as above for the recoverable and unrecoverable held glideins.

elif remove_excess_running and (req_max_glideins == 0) and (sec_class_held > 0):
 # no glideins desired, remove all held
 # (only held should be left at this point... idle and running addressed above)

 # Check if there are held glideins that are not recoverable
 unrecoverable_held_list = extractUnrecoverableHeldSimple(condorQ)
 if len(unrecoverable_held_list) > 0:
 log_files.logActivity("Removing %i unrecoverable held glideins" % len(unrecoverable_held_list))

 # Check if there are held glideins
 held_list = extractRecoverableHeldSimple(condorQ)
 if len(held_list) > 0:
 log_files.logActivity("Removing %i held glideins" % len(held_list))

 if (len(unrecoverable_held_list)+len(held_list))>0:
 removeGlideins(condorQ.schedd_name, unrecoverable_held_list + held_list)
 return 1 # exit, even if no submitted

