
Preparatory Notes for the CMS Infrastructure
Review

Ken Bloom
Walter E. Brown

Greg Graham
Liz Sexton-Kennedy

Jim Kowalkowski
Marc Paterno

William Tanenbaum
Avi Yagil

November 29, 2004

Abstract

This document discusses what the LPC Edm group considers best practice in
the domains of Framework and Edm. It is informed by our Run II experi-
ence, and documents our current understanding of the CMS software in these
domains.

Contents

1 Purpose of this Document 2

2 Introduction 3

3 The Task View 3
3.1 Analysis task . 4
3.2 Reconstruction task . 6
3.3 Trigger task . 8
3.4 Instrumenting the Framework . 8
3.5 Running the Program . 8

1

3.6 Event Processing Schedule . 9
3.7 Dynamic Libraries . 10
3.8 Topics We Haven’t Time to Write About 11

4 A Comparison Between CDF and CMS 14
4.1 The Architecture View . 14

4.1.1 The Module Layer . 14
4.1.2 The Algorithm Layer . 17
4.1.3 The Objects Layer . 17
4.1.4 The Geometry Layer . 22
4.1.5 The Infrastructure and Services Layer 22
4.1.6 Utilities and 3rd Party Packages 22
4.1.7 PackageList . 22

4.2 EDM . 23
4.2.1 The Event . 23
4.2.2 Collections, Objects and the Associations Between Them . . . 25

5 Metadata Management 26
5.1 CDF Use of SAM . 26
5.2 Object-level Metadata and CMS . 27
5.3 Dataset-level Metadata and CMS . 27
5.4 Event-level Metadata and CMS . 28

6 Summary 28

1 Purpose of this Document

The purpose of this document is:

• to list many good concepts that should be present in a framework and event
model based on Run II experiences;

• to provide (to the best of our knowledge) a list of features missing from the
CMS environment;

• to establish a set of rules or guidelines for ORCA code developers, in order
to help determine the interaction between the various physics packages and
the framework and the structure of objects in the event data,

2

• to aid in the production of an mutually-agreed-upon list of changes that are
needed—this could include changes in concepts and design of ORCA and
COBRA;

• to aid in our production of a workplan to execute the above.

We would like to stress that our purpose is not to have CMS emulate CDF’s
design. The intent is to identify the good features we rely on, independent of implemen-
tation details. We also want to identify and learn from our failures or poor choices.
We tried to represent both in our examples.

2 Introduction

Any large software system (greater than 20 packages contributing to the same bi-
nary) with a large number of people (greater than 10) has a tendency to become
chaotic. It is hard for any one person to know where it is best to place his class
with respect to the physical design of the large system. At CDF we give our de-
velopers some simple guidelines in order to make the system self-organizing. The
goal is to maintain a list in which each package (which usually consists of one li-
brary) is only listed once, i.e., there are no circular dependencies and the ordering
of the list is completely independent of the application that is being linked. Devel-
opers are asked to identify to which layer of the architecture their class belongs.
A layer consists of many different detector or physics packages that play a similar
role in the architecture of the system. For instance in the module layer we have
ElectronMods, TopMods, CalorMods, TrackingMods etc. After they identify
the layer for their class, they place it in the correct sub-system package for that
layer.

In the next section, various user tasks are discussed, with some comments on
how CDF and DØ meet the demands of these tasks. In the subsequent sections,
each layer of the architecture is described. The description is ordered from the
top-most layer of the hierarchy (nothing can depend on top-most layer packages
except the application builder) to the bottom-most layer (anything can depend on
this package).

3 The Task View

In this section we present several tasks that a (physicist) user might want to do.
The examples we have chosen are:

3

• analysis

• reconstruction

• trigger

• code behavior analysis

We do not intend to present formal use cases; we sketch only enough of a descrip-
tion of the task to make the necessary points clear. For each task, we describe the
main features of the software of one or more experiments that we believe produced
a successful solution. In some sections, we provide a short series of related tasks
to illustrate different aspects of the experiments’ solutions.

3.1 Analysis task

First consider a simple task of histogramming the transverse momentum of the
leading pT muon in each event. We start from a DST, and we do not want to per-
form new reconstruction. We want to find those muons, already reconstructed,
that were identified by a specific version of the muon reconstruction algorithm
and with a specific set of parameters used in the reconstruction and particle iden-
tification.

Each of the experiments we have worked with has the concept of a framework
module whose purpose is analysis (as opposed to reconstruction, online filtering,
or other tasks).

Framework module: A framework module a coherent body of code (an object) that
operates on a physics event and responds to external stimuli (computer sci- Framework

moduleence “events”) to perform various actions related to its single task. It per-
forms its task without direct interaction with other framework modules. It
can make use of framework services, defined later.

A user writing such a module would be responsible for implementing the few
necessary member functions for the module to perform its task.

One such member function is the module constructor. After construction the
module should be in a functional state. It should have correct values for all its
parameters and should not require later re-configuration before use. The parame-
ters for the module should not be compiled into the code; it should be possible to
inspect the parameter set without having an instance of the module—or the source
code for the module—present. There should not be a two-phase (or multi-phase)
configuration in which configuration is begun on construction but is completed only
after another module has been constructed.

4

The CDF framework has the concept of a help system that tells the users the
meaning and allowed values of various parameters used to configure a module.
Users have found this very valuable. The CDF mechanism is more tightly bound to
the module than we prefer; we prefer that the help system knows about parameter
sets, but not about modules. We prefer that the code of the module is independent
of the code of the help system, and vice versa. DØ has the concept of configuring
a module with a single set of parameter values; a module can be re-configured
by giving it a new set of parameters. This organization makes the reconfiguration
logic simple to write and easy to understand. The framework is responsible for
associating a specific parameter set with the appropriate module instance.

In our example, the creation of the histogram in which we will collect muon pT

values should be done in the constructor.1 The parameters for the histogram (the
number of bins, and the minimum and maximum values for the range) should
not be specified in the code, but should be provided by the parameter set given to
the constructor. Within the constructor, we query the parameter set for these val-
ues. The parameter set has a type-safe interface for retrieving the value associated
with a given named parameter. The parameter set conveniently groups associated
parameters at a level of granularity chosen by the developer of the module.

The second important member function of an analysis module is the analyze
event function. The argument for this function is (a const reference or pointer to)
an event.

Event: An event is an in-memory object database that can support insertions and
queries, but that supports neither deletions nor modifications of objects al-
ready inserted. The “query language” is not general, but is instead tailored
to the physicists’ needs, and is expressed in the interface of the event class. Event
Each event contains raw data and derived products (such as trigger output
and reconstruction artifacts) related to a single beam crossing, or simulation
thereof.

In our example, we are considering the histogramming of muons. Let’s consider
several sub-examples.

In one case, we want to histogram only those muons from a specific algorithm,
in a specific code version, configured with a specific set of parameters. We want
to make sure our sample is not contaminated by the event data objects that are the
product of any other “rogue algorithms.”

Event data object: An event data object is either a part of the raw data, of the sim-
ulation information, or of the output of a reconstruction algorithm. It has a Event

data
object

1The business of how to interact with ROOT is complicated, and we will avoid the details here.

5

unique identifier within the event.2 Associated with each event datum (but
not necessarily stored in the event) is an object that holds the provenance of
that datum. Such provenance information includes the details of the config-
uration of the algorithm that made the event data object and the identifiers
of other event data objects used as inputs for the reconstruction of the event
data object. The provenance may include additional information. There is no
“algorithm part” to an event data object.

In another case, we want to histogram the output of several algorithms, each
into its own histogram. In this case, we don’t want to fix the number of histograms
during construction of the module; we want to discover what algorithms have
been run, and histogram their output, and record the configuration information
for each algorithm from which we discover a reconstruction product.

In yet another case, we want to histogram the output of a specific algorithm,
and want the newest approved-for-conference-use version of that algorithm found
in the event, but reject versions that are “too old” or “too new.”

To support all these uses, the event data must be associated with the full set of
configuration information, and the event’s query mechanism must be able to use
all of, or any part of, that information as a constraint upon selection.

A third example member function is the divulge statistics function. This function
serves as a signal to the module that it is time for the module to report its current
state. Clearly a more detailed specification than this is necessary—we include it
here primarily to illustrate that not all module member functions have to do with
(physics) event processing.

Two additional module member functions are end of run and end of job. In our
example we have no need of these functions, so we do not implement them.

3.2 Reconstruction task

There is a wide variety of types of reconstruction tasks. We will use as an example
missing ET reconstruction, because it seems to be among the simplest of reconstruc-
tion tasks.

We create a single module to perform this task. The constructor for this module
is passed the same sort of parameter set object as was the analysis module from
section 3.1. For each event, the algorithm must use a particular set of event ob-
ject instances as input. In this constructor we specify not which actual instance of
event objects are to be used as input—since they do not yet exist, and change from
event to event—but rather how the algorithm is to identify which calculation of

2We see no need for this identifier to be globally unique and the cost of making it globally unique
seems prohibitive.

6

calibrated calorimeter energies it will use and which vertex it will use. These spec-
ifications need to be sufficiently accurate to be unambiguously identify the event
objects to be used as inputs for the missing ET calculation algorithm. In each case
we specify the type of the event data object and a description of the configuration
of the module that created that object. During construction of the module, we also
get a handle to any framework service we need—in this case the calorimeter geometry
service, which we will make use of during reconstruction.

Framework service: To get access to a global resource, we use a framework ser-
vice. Services manage initialization of, access to, and lifetimes of objects that Framework

serviceprovide non-event data—such as geometry information, and run conditions
information. It may be that access to ROOT histograms, etc. should also be
managed by a service. Our list is not exhaustive.

For the analysis module of section 3.1 we discussed the analyze event function; for
a reconstruction module we implement a process event function. The difference
is that process event is passed a non-const reference or pointer to the event and
is expected to modify the event by the insertion of a new event data object. In
this function, we first get handles to the correct input objects: the container of
calibrated calorimeter tower energies and the requested vertex. If either is missing,
we create a missing ET object that contains status information indicating that we
have tried and failed to reconstruct the missing ET , and also contains the reason
for the failure.

If the required inputs are found, we then iterate through the collection of calor-
imeter tower energies (in the event data object we obtained above), and determine
the directed energy vector from the vertex to the center of each hit tower, summing
the x and y components. This requires use of the geometry service to determine
the center of each tower in the collection of hit towers.

Geometry service: The geometry service is responsible for determining the identi-
fier of the current run, for determining what survey information to use for
the run, and for translating physical component identifiers to obtain geom- Geometry

serviceetry information about the identified detector component. It is independent
of event data objects—it is possible to determine the number of φ segments
in the hadronic calorimeter without having any event data present.

At the end of the iteration, we create a missing ET event data object, with the
appropriate data values, and insert it into the event. This object is labeled with
several pieces of metadata:

• the identifiers of the calorimeter tower energy and vertex event objects;

7

• the identifiers of the parameter set used to configure this module;

• possibly other items.

The missing ET object is issued its own unique (within the event) object identifier
upon insertion into the event.

In the design of the MiniBooNE reconstruction model, we found that it was
possible to automate nearly all of this identification and labeling process. Authors
of reconstruction algorithms need to do almost nothing in order to have their re-
construction products fully identified.

3.3 Trigger task

The trigger system places what are probably the strongest constraints on the sched-
uling features of framework. CDF has the concept of a trigger path, which consists
of a series of modules in a fixed order that act together to produce the portions
of event reconstruction necessary for a specific trigger decision. However, at CDF Trigger

pathtesting a trigger path in simulator is not sufficient to understand its behavior, be-
cause previous flows affect the result—because inputs are not sufficiently speci-
fied. Modules in different paths appearing in different orders could give different
results. In §3.6 we address the subject of scheduling in more detail.

3.4 Instrumenting the Framework

It has often been useful to measure the performance of reconstruction programs—
for example, to determine the speed of each individual task, or to find the location
of a memory leak. The module-based framework has made this easy to do, because
such tasks are handled in a common place and require neither instrumenting of
user code nor recompilation of the program.

3.5 Running the Program

Users at both CDF and DØ have complained about the difficulty of running their
respective reconstruction programs. Few users have expert knowledge of the pro-
gram, causing many to use ntuple-form output. Both experiments have a system
that is very flexible and powerful. However, both systems would benefit from
more attention to ease-of-use: presenting the configuration in a simpler fashion,
and guiding the user through more limited choices to make reasonable configura-
tions of the program. In both experiments the configuration is hierarchically de-
fined, and each node in the hierarchy can be defined in its own file. While this is a

8

good thing, it makes it difficult for the user to understand the result of the configu-
ration. It is hard to know what combinations of modules are valid; the system does
not help the user know what is valid. A browser of the hierarchy is a valuable tool;
DØ has recently developed such a thing. But even this does not allow the user
to understand what change in an “upstream” module will cause a change in the
behavior of a “downstream” module. Both experiments record the configuration
of the program at it was run, but both experiments lack a way to easily browse this
configuration information, or to easily share it between users.

Both experiments suffer from a lack of distinction between the build environ-
ment and the execution environment. At DØ the execution environment was intro-
duced as a late concept; tools (scripts) are provided to configure the environment
and run the program. These tools are complex. At CDF there is no separation
of the environments because a function (the constructor for the class AppUser-
Build) is intended to be tailored by the user, in order to determine what modules
are available for use, and what their instances’ names should be.

3.6 Event Processing Schedule

One of the important functions of a framework is to build an event processing
schedule. The schedule expresses what activities can be done in parallel and what
must be done serially. The “milestones” are also identified (multiple activities must
be completed before continuing). Many of the concepts listed below are necessary
for building a good schedule, one that:

• uses resources efficiently,

• minimizes event processing time,

• eliminates redundant calculations,

• is easy to configure,

• gives consistent and proper results, and

• can alert the user if a configuration is invalid or has ambiguities.

The sequences, dataflows and decision points, multithreading, and input and out-
put requirements can all be used in the creation of an event processing schedule.
Removing one of these pieces of information from the problem list will likely mean
that the schedule will be suboptimal. Are the four items listed above enough to cre-
ate this schedule at run time? How are they expressed in the configuration of the
program?

9

Inconsistent results is one problem that can occur if there is not enough infor-
mation available during the schedule generation. A simple example illustrates a
problem that can occur.

Figure 1: Example paths and possible execution sequences.

Figure 1 shows two paths that have the require the same instance of recon-
struction to run in order to make a decision. The framework will ensure that this
reconstruction only occurs once for each event. If the outcome of Reco-3 depends
on Reco-2 results and this relationship is not enforced within the framework, then
the outcome of Decide-3 will have a hidden dependency on the outcome of Decide-
1. To determine whether this set of paths produces a consistent result would re-
quire some kind of “coverage analysis,” where data representing the entire range
of inputs are fed through and the results are checked for consistency.

3.7 Dynamic Libraries

We want to discuss the use of dynamic (shared) libraries.
Does dead (unsed or test-related) code in a dynamically linked library cause

performance problems because it is always present, unlike a static library where
dead code costs little to nothing? It takes up virtual memory when the file is
mapped. Is it true that a small amount of dead code is not really going to hurt

10

much because of the demand paging mechanism in the operating system and the
lazy symbol linking?

Should shared libraries used by an executable come from only one frozen re-
lease so they are always consistent? Is this a written procedure or a policy actually
enforced in the program? How does this policy or procedure fit in with algorithm
developers? Is it too restrictive? Are there different rules for developers versus
production? Can the build produce a dependency database that is built into the
programs and also punch versioning tags (library and release) into libraries to be
used for validation? A scheme such as this could allow the dynamic library mix to
be determined by program configuration at run time.

How does one insure that in critical applications the program will not fail af-
ter a period of running because a shared object library cannot be loaded after en-
countering an event that causes a new event processing path to be executed? One
method is to only pull in libraries during program configuration.

Where is explicit loading and implicit loading used? Are only low-level li-
braries such as ROOT and persistency explicitly linked? Are all the reconstruction
tasks implicitly linked?

3.8 Topics We Haven’t Time to Write About

There are many topics we believe we need to discuss during our meeting, but
about which we do not have time to write. We list them here with brief explana-
tions, to help establish the scope of topics that we believe it is important to cover.
We have ordered them in order of their importance, with the most important items
first.

1. INTER-OBJECT LINKS: We believe it will be advantageous to make sure that
the persistent form of inter-object pointers within an event is realized in terms
of “dumb data” rather than any persistence mechanism’s smart pointers. The
CDF and D0 experiments placed restrictions on the use of pointers within
persistent objects. Objects in an event could refer to other objects in the same
event or to items heard within them. A reference to an item within an object
appears as a tuple of identifiers (EDOID,index), where EDOID is the event
data object ID discussed earlier in this document and index is the item in
this object in which we are interested. The event data object that supports
indexing is required to supply a method that will produce the desired object
given the index. Many persistent data objects fit this random access container
pattern.

2. SEQUENCES OF MODULES: We believe it is useful for the framework to have
a concept of sequences of modules that can be manipulated as a single unit.

11

This organizational component helps reduce the complexities of understand-
ing what a particular program configuration is doing.

3. DATAFLOWS AND DECISION POINTS: We believe that, in conjunction with
sequences from item 2 above, that it is useful for the framework to have the
concepts of dataflows and decision points, from which can be constructed trig-
ger paths (among other purposes). A dataflow is a series of paths through
which an event moves and a specification of the actions that occur within
the paths. A path may have distinct stages such as merging several input
streams, doing the reconstruction, tagging output results, or creating an analy-
sis ntuple. A decision point is a place along a path where code must make
some qualitative decision about the event. Whether or not the event will
proceed down a path or be steered to other paths is determined by the con-
figuration of a decision point.

The information conveyed by these concepts can be used to build a static
schedule. The information can be used to constrain an ensemble of module
sequences and express how there will work together. Constraint examples
can be “path one must come before path two” and “path three only happens
if path two succeeds”.

We want to discuss whether it is sufficient to have a single “process” method
that handles all types of actions performed on or with an event, or if we
should have several different methods, each with a different purpose.

4. CALIBRATION: We want to make sure we discuss the requirements placed
upon the framework and event model by the specialized task of generating
and studying calibrations. There are also issues to be discussed in the subject
of using calibrations.

5. INTERACTIVE USE: We would like to discuss the special demands placed
upon the system by the need to support interactive use. This includes is-
sues of a diverse natures, such as an interactive help system and interactive
analysis.

6. MULTITHREADING ISSUES: We would like to discuss the possibility of tak-
ing greater advantage of the use of multithreading, for example in the parallel
reconstruction of multiple events, and parallelism within the reconstruction
of a single event. We believe this will become more important in the future,
as multiple-processor machines and multiple-core processors become more
common.

12

Given the large amount of ancillary data necessary to process events and the
large start-up time, there may be an advantage to starting up a single exe-
cutable and create an event processing “pipeline.” One image of geometry
and calibration data can be established along with one instance of the data
handling and persistency code. Independent paths (or subpaths) can be ex-
ecuted in parallel. We believe that such schemes may not require physicist-
developed code to be multi-threaded. The EDM and framework will do the
synchronization and resource scheduling.

7. DATA INPUT AND OUTPUT: We want to discuss the writing of multiple
streams of output, merging multiple streams of input, and the usefulness of
“tagging” events (and objects within events) in the creation and processing
of multiple input and output streams.

8. UNPACKING: We believe it is useful for the core event model to provide
utilities for the unpacking of “raw” data, in the interest of efficiency and ease-
of-use.

9. DATA VISUALIZATION: Data visualization requires use of the interactive
features of the framework. The tools used for this operation typically com-
plicate the system because they have their own concept of an event loop.
The data formats necessary to visualize the data can be quite different than
those in an event. We would like to discuss how the interactive features of a
framework allow for interfacing to visualization packages.

10. HISTOGRAM AND NTUPLE SERVICE: We recognize that ROOT will be used
by many, if not all, CMS collaborators. We think it is likely that one of the
common uses of the analysis framework will be to produce programs that
make ROOT ntuples (or TTrees) specialized for a specific task. We also ex-
pect there to be a need for the use of histograms during reconstruction es-
pecially during the commissioning of the CMS detector. We believe that the
mechanisms provided by ROOT for the management of histograms and ntu-
ples are inadequate for serious use, and that a histogram service should be
provided to handle the management.

11. SPECIFYING INPUTS AND OUTPUTS: Is it a good idea for modules to de-
clare a list of necessary inputs and products? If so, how is this expressed?
It is likely that object types is not good enough and that some of the EDM
metadata is necessary (e.g., algorithm name and version or configuration pa-
rameter values). How is the static declaration part expressed? If there is a
dynamic component (one that uses metadata configuration), when does it
need to be calculated? Is it before or after module construction time?

13

Is this information and the dataflows and decision points information enough
for the framework to produce a deterministic schedule? We desire a schedule
that eliminates redundant work and minimizes the chances of inconsistent
results due to order dependencies within a program configuration.

12. ERROR HANDLING: We believe that the algorithms contributed by physi-
cists and others that plug into the framework cannot determine directly know
what actions are required as a result of an observed adverse condition. The
context in which the program is running will dictate what the proper actions
will be when these conditions occur. This implies that modules and algo-
rithms report conditions and the framework determines the proper course
of action3 (e.g., abort event processing, ignore, skip a portion of processing,
abort a run, save the event for further testing, restart the program). We would
like to discuss how these conditions are reported by user code and how the
framework makes use of the information.

13. CALIBRATION AND ALIGNMENT DATA MANAGEMENT: We believe it is
important for it to be easy for users to obtain the appropriate calibration data
and alignment data for a given data sample. We think it would be useful to
discuss how the framework can automate this process.

4 A Comparison Between CDF and CMS

In order to facilitate discussion during Vincenzo’s visit to Fermilab, we present a
description of the CDF architecture and a comparison with our understanding of the
CMS architecture. We have two goals:

• To present for Vincenzo the context from which those with CDF experience
approach the framework and event model, and

• To express our understanding of the CMS infrastructure, so that any misun-
derstandings we have can be corrected.

4.1 The Architecture View

4.1.1 The Module Layer

A good model for CDF’s framework is a software bus or backplane, which pro-
vides a well-defined common interface for a set of interchangeable components.

3The framework should allow run-time configuration to determine the course of action to be
taken when a module fails.

14

The components in this system are modules, which are the highest-level elements
of the architecture. Modules can be plugged into this bus as long as their event
input requirements are satisfied by an earlier module in the chain or by the input
data module. Modules can only communicate through the event record, which is
described below.

An executable is composed of the framework, plus an arbitrary number of dif-
ferent modules that are specified at build time. At run time, the user can choose
to run any subset of those modules in any order (although obviously not every
order would be sensible). The module concept is important because it enables unit
testing; each module can in principle be run independently of any other module,
as long as the proper set of inputs exist in the event record. In-between module in-
vocations the framework can provide optional services such as checking memory
usage; this allows leaks to be isolated to particular parts of the binary..

Modules are encouraged to be single purpose, dealing with a limited set of
inputs and outputs (although “limited” does not mean exactly one). This does
mean that there can be a large number of modules associated with a particular task,
such as reconstructing muon hits, stubs and track-stub combinations throughout
the detector. These modules must be sequenced in just the right order. For that
purpose, we have the concept of a sequence of modules, which is an ordered list of
modules.

Modules also provide the run-time configuration interface. The current state
of all of the modules parameters can always be “shown” and a description of the
meaning of a parameter can always be printed through a generic help interface
available through run-time commands. 4

There is a special class of modules that provide services such as:

• Event Input

• Multiple Stream Output

• Geometry Input

• Calibration Management

• Run Configuration Input

• Error Logger Management

4CDF has the ability to script configurations in tcl. Most CDF users would say this is a good
thing. Our run job collaborators hate this, so we think this is one area where it impossible to come
to a Run II experience consensus.

15

CDF modules have a minimal state machine concept. Module writers must think
about what actions they want to do for specific states of the process. The most
common states are:

• Module Construction

• Begin of Job—happens after all user configurations

• Begin of Run

• Event Processing

• End of Job

• Module Destructor

Typically, at begin of job, the module performs initializations that are needed for
later event processing. At begin of run, the module will read database information
that describes the detector state for a particular run. In the event-processing section
of a module, the framework provides all of the data associated with a particular
beam crossing, and the module typically makes use of some subset of that data for
reconstruction and analysis purposes.There are more possibilities (e.g., beginFile),
but they are not in common use.

Modules are the creator of event objects, which are described in greater de-
tail below. They create the objects on the heap and assign EDM (event-data model)
handles to them. (The handle is created on the stack of the module’s event-processing
method). The EDM then takes care of their lifetime management, but it is up to the
module to decide whether or not the object it creates should be appended to the
event. Only appended objects are visible to downstream modules; otherwise they
are destroyed when the module has completed its processing. (Technical details: If
the object is appended to the event then its reference count is incremented. When
the handle goes out of scope and is destroyed it decrements the count associated
with the event object. If the object was never appended to the event then the refer-
ence count will go to zero and the object will be destroyed but if it was appended
the count will be at least one and the object will live on until the event gets cleared.
This happens right before the next event is read in.)

Module packages are not allowed to depend on each other. If a module wants
to use a method of another module then it must define an algorithm class that
encapsulates that functionality that then can be shared between modules. From a
user’s perspective, he can then prepare an unordered list of module packages he
wants linked into his application, and the system can then calculate which libraries
to link.

16

CMS: No clearly identifiable set of single purpose modules, with clearly
defined precursors.

4.1.2 The Algorithm Layer

As was just described, classes in the algorithm layer are those that might be used
by multiple modules. Ideally, algorithms use event data that is passed to them
through a shared pointer, and then report output and errors back up to the mod-
ules that invoke them. They depend on modules to configure services such as
calibration database access. If an algorithm is in fact used only by a single module,
then this layer is unnecessary, but as it can be difficult to predict how users may
want to use particular algorithms in the long future of the experiment, it is safest
to define classes in this layer. Since this layer is designed for reuse, it is natural
that the different algorithm libraries depend on each other. However these depen-
dencies must be kept in one direction. There can be no cyclic dependencies. CDF
has found that the best way to assure this is to align the ordering of the algorithm
libraries to the ordering of the object libraries. For example a jet algorithm may use
a function from the calorimeter library but not vise-versa.

4.1.3 The Objects Layer

Algorithms ultimately read and then create data objects. The classes for these ob-
jects must be partitioned into their own packages and libraries. The most impor-
tant feature of the data organization in CDF is that the data classes themselves are
as simple as possible. For the most part, the objects are structs of data and member
functions that manipulate that data to obtain derived quantities that no one would
ever argue about. For example if a four-vector is stored there may be a member
function that would return its invariant mass because no one will ever say that
they have a better way of calculating that value. On the other hand, a member
function that calculates a parameter characterizing the longitudinal shower shape
of an electron in the electromagnetic calorimeter is an example of a function that
never should be in an Objects level package. Schema evolution is very painful (it
makes older validated versions of the code unusable with newly produced data;
you can’t expect forward compatibility) and should be avoided at all costs. We
need to know that when an Object level package changes it is not due to some
algorithmic change but rather a change to the layout of the data.

Ideally, object packages would only depend on infrastructure classes like Stor-
ableObject (similar to TObject). It is often convenient to use geometry infor-
mation to organize the data. However it should always be possible to read and

17

interpret a data object without knowing which version of the geometry was used
to organize it. CDF made the mistake of not following this rule in the silicon de-
tector system and it was one of the things we had to correct later. At CDF we now
use the following guideline: a compile time dependency on a geometry package is
allowed if the contents of that header file will never change. For example, you can
use the muon wedge numbering convention defined in a header file, but cannot
refer to the exact spatial position of the wedges or their wires.

In summary, classes in the object layer may depend on the static pieces in the
geometry layer as well as on infrastructure and utility layers. They can not depend
on any objects in the algorithm or module layers.

CMS has no clean separation between the Object Layer and the Module
Layer.

CMS has no enforced restrictions on what may be contained in an Ob-
ject Layer class.

CMS persistent objects:

1. may contain simple data (doubles, ints, etc.)

OK

2. may contain persistent POOL references (using global OIDs) to
other objects.

This is not desirable. Object IDs need to be unique only
within the event. Globally unique IDs allow objects within
an event to refer to objects within a different event, which
is not desirable. Also, the ID of an identical copy of an ob-
ject should be the same for every copy. However, POOL

assigns a new ID to each new copy. Furthermore, POOL

does not assign the ID until the object is marked for persis-
tency, so newly created objects have no ID. Furthermore,
POOL persistent pointers are not simple objects, so they
complicate the browsability of data. The conclusion is that
event objects should not contain POOL persistent refer-
ences. We will refer to this conclusion as Rule A.

3. may contain C++ pointers to other objects, sometimes embedded
in a “smart pointer”class.

This is probably not desirable. Objects referred to by C++
pointers are embedded in the referring object by ROOT.
However, the format in which the embedded object is stored

18

is more complex than if the object were contained directly.
This may complicate the interpretation of the event object
by tools other than POOL or ROOT. The conclusion is that
event objects should not contain non-transient C++ point-
ers. We will refer to this conclusion as Rule B.

4. may contain arbitrarily complex object members.

This is not desirable. Use Event local IDs as references to
keep the individual objects simple. This is Rule C.

5. may contain vectors or other containers of 1–4.

OK for 1.

6. may contain arbitrarily complex methods (i.e., member functions).

This is not desirable An object should contain only meth-
ods that never change. This is Rule D.

7. often inherit from one or two arbitrarily complex base classes.

This is not desirable. Inheritance from base classes con-
taining no data (only methods) is acceptable if the meth-
ods will never change. Inheritance from base classes con-
taining arbitrary data is undesirable, as this complicates
the interpretation of the object. This is Rule E. Inheritance
from a base class specific to the persistency mechanism
is acceptable.

Here is an analysis of the classes used for persistent objects to store
an event in CMS data sets. Only per event objects are described here.
Metadata are not discussed.

For the SimHits per event persistent objects:

1. 4 COBRA classes
(GenEventBody, SimEventBody, PythiaSimEvent, RawEvent)
PythiaSimEvent is complex, having inheritance and POOL point-
ers to GenEventBody, SimEventBody, and RawEvent. Violates
Rule A and possibly Rule E.
RawEvent is complex, having vector of POOL pointers to a whole
mess of stuff. Violates Rule A.
GenEventBody and SimEventBody have data members of class
type. The data members are simple, although they have methods.

19

2. Wrapped STL vectors (some with external hashing) of 2 COBRA

(Profound) classes:
(PCaloHit, PSimHit)
PCaloHit is simple.
PSimHit is simple, except that it contains member objects of type
3-vector and 3-point from the COBRA “class reuse” library. The
data here is trivial (e.g., 3 floats), but the classes have many
methods and levels of inheritance.

Summary:
PythiaSimEvent and RawEvent are too complex, vio-
lating Rule A, and possibly violating Rule E.
GenEventBody, SimEventBody, PSimHit, and PCalo-
Hit are OK.

The per event objects in a Digis data set are instances of:

1. 3 COBRA classes. All 3 are complicated.
(PRecEventInd, SimCrossing, SimDigiEvent) (inheritance,
POOL pointers, etc. Violates Rule A and possibly Rule E.)

2. Wrapped STL vectors (some with external hashing) of 12 ORCA

classes.
Of the 12 ORCA classes: None have member functions that seem
likely to change.
Three are simple (ints, floats, doubles, etc. only). GOOD.
(MRpcDigi, MuEndStripDigi, MuEndWireDigi)
Four use member structs (with or without bitfields) for packing, but
are otherwise simple. Member structs have no methods. (Digi-
SimLink, MuBarDigi, PixelDigi, StripDigi)
Two have a single data member of class type. (Violates Rule C).
But the data member is simple, although it has methods. (Calo-
DataFrame, EcalSelectiveReadoutTower) contain a PCellID.
Two have a single data member of class type. as above, but also
inherit from a base class. (Violates Rule C and Rule E) The base
class has no data, only methods. (EcalTrigPrim, HcalTrigPrim)
contain a PCellID and inherit from CaloTriggerPrimitive
(abstract). CaloTriggerPrimitive has methods only (all sim-
ple), and does not inherit.

20

One has several data members of class type. Violates Rule C.
(L1TriggerReadoutRecord) The types of the data members
have not yet been checked.

Summary:
PRecEventInd, SimCrossing, and SimDigiEvent are
too complicated, violating Rule A and possibly Rule E.
L1TriggerReadoutRecord may be OK.
CaloDataFrame, EcalSelectiveReadoutTower,Ecal-
TrigPrim, HcalTrigPrim, MRpcDigi, MuEndStripDigi,
MuEndWireDigi, DigiSimLink, MuBarDigi, PixelDigi,
and StripDigi are OK.

For the DST, all reconstructed objects inherit from RecObj, violating
Rule B, and the RecObj pointer is packaged in a PRecCont.

1. PRecCont is an STL vector of own ptr<RecObj>. It has no
base classes, and no other data members.

2. own ptr<T> is COBRA’s own smart pointer. It has no base classes,
but many methods. Its only data member is a T*, or in this case, a
RecObj* (Violates Rule B) . Any pointed to object of a persistent
capable class inheriting from RecObj will be output in its entirety.
This is due to a feature of ROOT (transparent to POOL).

3. An analysis was done of the reconstructed objects used for tracks
in the silicon tracker. Many of these classes have multiple layers
of inheritance, and many methods at each level. Many of these
methods are simple and should never change. However, this is
probably not the case for all such methods. The data members,
however, are all simple floats, ints etc., and STL vectors of
such.

4. No analysis was done at this stage about the complexity of the
remainder of reconstructed objects (i.e., other than the tracker).

Summary:
Reconstructed objects are too complicated. Although their
data are simple, there are many methods, and many levels
of nested inheritance (Violates Rules D and E). Also, the
implementation of RecObj through pointers may cause

21

difficulties (Rule B). These topics need more investigation

4.1.4 The Geometry Layer

Static geometry information such as positions of tower boundaries in the calori-
meter is contained in header files. The same geometry description classes are used
for both the simulation and the reconstruction; this design feature allows us to
avoid the labor-intensive task of describing the same geometry multiple times for
multiple purposes. The geometry classes contain information needed to initial-
ize GEANT 3 data structures as well as interfaces for tasks such as alignment and
dead channel marking. These dynamic aspects of the geometry must be kept in
databases.

4.1.5 The Infrastructure and Services Layer

These live below the geometry layer. For the most part it is obvious what goes
here; the classes that describe the framework itself, and services such as database
access and error logging. The only tricky part is working out the interface between
the geometry layer and the alignment DB, which is part of the calibration service
layer.

4.1.6 Utilities and 3rd Party Packages

These are the tools that the above layers all use. By definition these packages will
not depend on any experiment-authored software. It includes everything from
CLHEP to ORACLE client libraries to ROOT libraries.

4.1.7 PackageList

This is the utility that has kept link time problems off the CDF help lists. It provides
the ordered list of libraries for all CDF packages while minimizing the exact set that
is used for any one job.

CMS: There is no simple way to determine the minimal (or even a suf-
ficient) set of libraries needed to run a specific job, other than trial and
error. In order to run our sample Si tracker use case, no fewer than
75 COBRA or ORCA libraries needed to be specified at link time in the
SCRAM build file. If any subset of these 75 libraries was not included

22

in the SCRAM build file, any one of the following results could (and did)
occur:

• A failure at link time.

• A descriptive fatal error message about a missing library.

• A totally confusing fatal error message.

• An uncaught exception.

• A segmentation violation.

Only five needed COBRA or ORCA libraries, and their six dependen-
cies, could successfully be left unspecified at link time and be explicitly
loaded at run time by dlopen. These five libraries were selected in
no fewer than three different ways in COBRA. If CMS has a general
mechanism for run-time loading of libraries, it is not widely used.

4.2 EDM

4.2.1 The Event

• The EDM provides a well defined event concept, with well defined interfaces
to the data within the event.

• The EDM can handle data with different lifetimes or periods of validity. For
instance event data is destroyed after every event, but run dependent data
would be preserved for the lifetime of the run.

• The event must provide type safe interface to objects stored in the event.

• The EDM allows a separation between transient and persistent representa-
tions of the data. The most important feature of the persistent data is that
it be as compressed as possible with minimal information loss. The most
important feature of the transient data is ease of use and navigation. This
argues that there should be some non-trivial transformation of the data be-
tween disk and memory. By default a minimal amount of the event should
be transformed this way. The rest should be turned on by the the user (or
transformed on demand, which CDF does not do).

• It has an interface to the configuration system, so that file level metadata may
be made persistent in an optimal way. The EDM together with the framework
should assure that object provenance is completely retrievable. At CDF all of

23

the parameter settings of the module that created the object are summarized
by an RCPID. The RCPID is stored as a data member of a StorableObject.
The RCPID can be used as a key in a database lookup to retrieve the values
of the parameters associated with it.

• At CDF, the event consists of an expandable collection of data objects, which
are described by classes in the object layer described above. Once once an
object is appended to an event it becomes read-only. The non-const version
of the handle is emptied of information and a const handle is passed back
to the caller of append method.

• As event objects are read-only, a strategy for correction and association ob-
jects should be designed, to handle the fact that information in the object
may need to be “improved” later due to greater understanding of the detec-
tor. Without such a strategy, users will want to violate the read-only policy
and figure out ways around it (usually involving global variables). At CDF
we didn’t think about this ahead of time, and we now have several solutions
to the problem (but at least we’ve stamped out most of the globals).

Current CMS event characteristics:

1. No clearly-defined, fully self-contained event class that contains
no pointers. Navigation required between the components of an
event. This usually requires pointers of some kind. Objects have
no unique per-event ID.

2. Lifetime control—An object remains locked in memory as long as
a POOL smart pointer points to it. Effectively, these are shared
pointers. When an object is committed to disk, the shared pointer
used for writing the object is destroyed at the commit, so the object
will be locked in memory only if other shared pointers reference it.

3. Type Safe Interface—In some cases, a retrieved object may be
accessed through a pointer that is not of the same type, but rather
is of type pointer to a base class. This does not usually require
the user to cast the pointer, as virtual methods can be used to
ensure type safety in method invocation. This occurs because of
the deliberate use of polymorphic pointers in the framework, not
because of any fundamental problem with ROOT or POOL.

4. No general mechanism to provide different transient and persistent
representations of an object, except for the ability to mark some
data members as transient.

24

5. Interface to configuration system—Configuration information is stored
in the metadata, but it is not clear if this information is sufficiently
complete. Information on the Geometry (when necessary) and the
detector components is stored, but it is far from clear if sufficient
information to reproduce the results are stored.

6. Per-event data is read only once written, but there is no mecha-
nism enforcing this, other than the framework not supporting it. No
mechanism enforces the constancy of transient versions of read-
only objects. “Globals” are generally not used.

4.2.2 Collections, Objects and the Associations Between Them

• The EDM should provide a well defined interface for creating associations
between collections of objects. At CDF this is provided through the link
classes. The type of the link class depends on the type of collection it is point-
ing into. For instance if the link needs to point into a collection object then it
must know the link to the particular collection plus the index into that col-
lection.

• It should enforce clear policies of object ownership and provide tools for
tracking down mistakes where it is not possible to prevent them by con-
struction. At CDF event objects are supposed to be created on the heap and
passed to the constructor of an EDM handle. The handle manages the life-
time of these objects by reference counting them. There are debugging tools
for tracing the reference counts of objects that are suspected of leaking out.

• CDF’s EDM provides several collection classes that are light extensions to the
STL vector. Different collections are used for different ownership policies.
There are value collections, which own their elements, but there are also view
collections, which are just collections of references to other objects stored in
value collections. This is how we resolve who should write out the data when
many people are referencing it. The collections write out their contents, the
views just write out their persistent references to them.

1. CMS has no general purpose interface for providing associa-
tions collections of objects. There do exist some specific “link”
classes for associations between objects of specific types.

2. Object ownership—POOL has the responsibility for memory man-
agement of objects in its data cache. There is no well-defined

25

policy for the memory management of transient objects, or tran-
sient copies of persistent objects.

3. Collections: COBRA has its own collection mechanism, but it
is currently used only for collections of events (a run), and for
collections of runs. This is used only internally by COBRA, and
is complex (i.e., not light). POOL provides a (not light) collec-
tion facility, but it is not yet used. STL vectors are extensively
used for collections, and are used in the implementation of CO-
BRA’s collection mechanism.

5 Metadata Management

In the present section, we will refer to the term metadata repeatedly. This is an over-
loaded term that can refer to the object level metadata that an experiment specific
application framework (such as ORCA /COBRA) requires to reconstruct complete
events from pieces stored in possibly many files, to dataset level metadata that
may contain run conditions or Monte Carlo generation parameters, or to event
level metadata that may consist of analysis defined quantities of interest to the an-
alyst. The intended usage of the term metadata will be explicitly determined in the
following text unless it is completely clear from the context.

5.1 CDF Use of SAM

CDF has moved to using version 6 of the SAM metadata. SAM is documented
extensively elsewhere, but a short summary follows.

In the SAM system, events are located in file containers with sequential access.
The event data model must therefore support at least this kind of file based access
to events in order to use SAM. Conversely, the use of SAM is very widely applica-
ble. All kinds of metadata in SAM are generally file oriented. Files are imagined to
exist in a multi dimensional space specified by their metadata. A metadata query
service interprets user given constraints on these metadata dimensions in order to
describe a portion of metadata space containing files of interest. The Sam schema
explicitly defines some physics metadata, such as luminosity information. The
schema then ties this luminosity data to the runs and data files. Sam also keeps
track of some data stream and trigger information. However, most of the stream-
ing and trigger data is interpreted directly by physics applications. Sam is capable
of recording the physical data stream, the trigger stream and the trigger lists. (CDF
currently encodes trigger information in the “file family” parameter of the Enstore

26

mass storage system and it’s equivalent in SAM.) Other metadata include system
level metadata consisting of authentication, authorization, and fabric definition
data; production job request metadata, and user defined physics metadata. A pilot
project to use SAM with POOL based COBRA/ORCA datasets has met with prelimi-
nary success in that it has been shown that the ROOT-based files can be stored into
a SAM station and the information needed to reconstruct a POOL XML file can be
stored in the SAM schema.

5.2 Object-level Metadata and CMS

The current procedure for building a dataset and preparing it for access by physi-
cists using the ORCA /COBRA application has been well-documented elsewhere.5

The procedure is a fairly involved and time consuming task comprising mainly
of manipulation of the object level metadata and metadata contained in the POOL
persistency layer. While we understand that some of this is due to issues that
came up in the haste to prepare for the 2004 Data Challenge or to issues in the
POOL software implementation itself, and perhaps are already being addressed, it
is nonetheless important to try and determine as far as possible requirements on
the event data model that may ameliorate the situation.

One issue is that the event data model must contain some mechanism to guar-
antee safety of concurrent accesses to the event data. Previously, this was guar-
anteed by the OBJECTIVITY lock manager. Without this capability, metadata must
be built sequentially (i.e., data segments must be “attached”) in a dataset in or-
der to prepare it for access by physicists. Another issue is that there is no API for
the ORCA /COBRA application to tell POOL to close a file or to specify a maxi-
mum number of simultaneously open files. The resulting situation is that during a
typical dataset build, all of the files comprising a dataset will be open contempora-
neously. For a large dataset consisting of thousands of files this will break even the
most robust mass storage system access methods, requiring that the entire dataset
be staged to a specially tuned NFS partition. (Later versions of POOL support a
parameter to specify the maximum number of files open under POOL.)

5.3 Dataset-level Metadata and CMS

Dataset-level metadata includes run and trigger conditions collected during real
data taking and generation or simulation parameters for Monte Carlo datasets. Re-
quirements coming from this level of metadata are more on the data management

5See http://home.fnal.gov/∼gug/cms/datasetBuildAndValidate.html.

27

http://home.fnal.gov/~gug/cms/datasetBuildAndValidate.html

system than on the event data model, and thus beyond the scope of the current
paper.

5.4 Event-level Metadata and CMS

Several groups have experimented with event level metadata, or tag databases in
CMS back when OBJECTIVITY was in use. Since the event data was directly stored
in an object database, the conceptual procedure for creating a tag database was a
simple one. One simply created an object containing the tag or other event level
calculation and stored it into the event itself. See for example presentations by
Koen Holtmann6 and Vincenzo Innocente et al.7 for CMS, or David Malon and
Kristo Karr8 for ATLAS

In CMS, in order to provide similar functionality again, some kind of indexed
or pseudo-random access to events data should be supported by the event data
model. In CMS, this is possible once the dataset has been fixed. This is also possible
in CDF, where a tag database has been implemented using root trees containing
run numbers, event numbers, and file pointers.

6 Summary

We recognize this document is of significant size and scope. We collect here what
we believe to be the most important issues we have addressed. In most cases, we
suggest a goal, but we present neither concrete designs nor implementations to
achieve these goals, which are:

1. an explicit Event class, as defined in §3.1.

2. explicit framework modules, as defined in §3.1. These modules should com-
municate with each other only via the Event.

3. plans for the designing (when desirable) of improved data objects, in which
each data object contains only simple data and is isolated from the algorithms
that creates it.

4. a system for scheduling the execution of modules (§3.6) that is efficient, de-
terministic, and easy to use.

6See http://www.ppdg.net/pa/ppdg-pa/idat/caltech-may02/koen2.ppt.
7See http://www.ihep.ac.cn/∼chep01/paper/3-041.pdf.
8See http://agenda.cern.ch/askArchive.php?base=agenda&categ=a043071&id=a043071s1t2%2-

Ftransparencies%2FMalonEventTags.ppt.

28

http://www.ppdg.net/pa/ppdg-pa/idat/caltech-may02/koen2.ppt
http://www.ihep.ac.cn/~chep01/paper/3-041.pdf
http://agenda.cern.ch/askArchive.php?base=agenda&categ=a043071&id=a043071s1t2%2Ftransparencies%2FMalonEventTags.ppt
http://agenda.cern.ch/askArchive.php?base=agenda&categ=a043071&id=a043071s1t2%2Ftransparencies%2FMalonEventTags.ppt

5. an association of event objects with appropriate metadata to allow querying
through the event interface.

6. a simplification of physical design to remove unnecessary library dependen-
cies.

7. a more robust and user-friendly system for the explicit9 loading of dynamic
libraries.

8. a long-term plan to gain benefits from the use of multithreading (§3.8, item 6),
or to be rid of the additional complexity multithreading introduces.

We look forward to collaborating with you in addressing these issues.

9Loading with dlopen on *nix.

29

	1 Purpose of this Document
	2 Introduction
	3 The Task View
	3.1 Analysis task
	3.2 Reconstruction task
	3.3 Trigger task
	3.4 Instrumenting the Framework
	3.5 Running the Program
	3.6 Event Processing Schedule
	3.7 Dynamic Libraries
	3.8 Topics We Haven't Time to Write About

	4 A Comparison Between CDF and CMS
	4.1 The Architecture View
	4.1.1 The Module Layer
	4.1.2 The Algorithm Layer
	4.1.3 The Objects Layer
	4.1.4 The Geometry Layer
	4.1.5 The Infrastructure and Services Layer
	4.1.6 Utilities and 3rd Party Packages
	4.1.7 PackageList

	4.2 EDM
	4.2.1 The Event
	4.2.2 Collections, Objects and the Associations Between Them

	5 Metadata Management
	5.1 CDF Use of SAM
	5.2 Object-level Metadata and CMS
	5.3 Dataset-level Metadata and CMS
	5.4 Event-level Metadata and CMS

	6 Summary

