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1 Introduction

We have reviewed two of the major software products from RTES used in the SC2003 prototype project,
with the goal of evaluating the applicability of these products for the use of BTeV. The two products we have
reviewed are Chameleon and GME.

In this document, we comment on those issues we believe to be of greatest importance to BTeV. While we
propose solutions for some problems, we have not attempted to provide solutions to all the problems we have
identified.

In order to orient ourselves for this review, we considered a few of the roles in which BTeV authors would
be acting. The most obvious were the following:

Element producer A BTeV author who makes a new element. Why would I produce a new element? I have
data posted by my physics algorithm, for which I need to collection statistics. An element would be
written to capture this information, to deal with it, and to put the output somewhere useful. An element
could also perform changes to the system to alleviate problems.

Elements produced by BTeV users would typically have one of the following purposes:

• Accumulating statistics.
• Watching for ”bad things” in the statistics.
• Making changes in the system.

VLA producer VLA means very lightweight agent. Like an element, but runs in the embedded world. Rela-
tively few BTeV experts are likely to be writing VLAs.

VLA user Someone who has written a PA that needs to communicate with a VLA. Many more BTeV authors
will use VLAs than write new VLAs.

These user categories aren’t very intuitive for BTeV. So we chose to consider a few scenarios (use cases)
describing concrete jobs to be done, and what they entail.
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1.1 Use Case 1

I need to collect statistics for every event, for example the total number of hits in a system. I need to see this
for every event that comes into level 1, not just those that survive the trigger process. What do I have to write?

• A physics algorithm that looks at event data, and calculates the number for that event, and
which puts it into my local histogram. This software uses a VLA, because it communicates the
histogram to the collection system by using a VLA.

• Somewhere, the 2500 histograms (one from each DSP) have to be collated. I would write an
element to do this, to be run in a local ARMOR. The locals collate perhaps 200 different parts.

• Somewhere, the final collation has to be done, and the results get put into ROOT format. This
would be done in another element, which is run in the regional/global ARMOR. This element
posts the result to the database.

1.2 Use Case 2

I have to write the code that deals with a farm board temperature going out of range. What do I write?

• An element to go into the local ARMORs that watches the temperature. It reads the temper-
ature once every n seconds – n is set by the configuration. Different board types may need
different temperature thresholds, which also need to be set individually. The element can alert
the operators via the control system.

• I write another element, run at the global level, which looks for a “temperature it too high
message”, and does the right thing to gracefully shut down the board. This thing could also
send a message to the operators.

1.3 Use Case 3

I have invented a new physics algorithm. Do I have to integrate with anything here? The end result is I don’t
care about the ARMOR system for this – the configuration is done outside of the configuration for the elements,
etc.

It seems inconvenient for users to have to know about more than one configuration system – users will want
there to be the One True Way, and this way should be chosen by BTeV, not by RTES.

2 Major Concerns

2.1 Organic Complexity

The system architecture is very rich and complex. Part of this complexity is inherent in what BTeV needs
done, and perhaps part of it could be excised as implementing flexibility that BTeV would never under any
circumstances make use of. Be that as it may, there are several interacting sorts of complexity:

• The multitude of elements and ARMORs.

• The layering of messages coming from one element, through routing elements, to others.

• The parent-offspring relationships.

• The notion that messages are shopped around and responded to by (frequently multiple) sub-
scribers.

• The pervasive use of threads.

• The use of locks, mutexes, and related notions.

• The fact that all these activities are going to happen on a multitude of different processors.

A key point is that this is supposed to be a fault-tolerant architecture – that is the whole purpose of the
project. That means that all this organic complexity is going to have to work smoothly in the presence of:

• Hardware which is assumed to occasionally crash and/or produce incorrect intermediate results.

• The assumption that some software modules may not be coded perfectly, and may either crash
or produce misleading messages and/or data.

In our experience, any system of this level of complexity that functions gracefully in such a hostile environ-
ment does so for three reasons:
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1. There is some overweening set of principles, scrupulously followed, which enables the designers
to present logical proof that most or all of the potential unacceptable failure modes cannot occur.

2. The overall system and various intermediate levels of combinations of parts of the system have
been subjected to vicious integration, mid-level, and unit testing, to demonstrate that the “logical
proof” mentioned above really is effective. This testing requires careful and clever (diabolical would
be better) planning and design. It is distinct from (and ideally totally separate from) the sort of
diagnostic testing that allows you to shake the bugs out of the early code. We can call this set of
tests the core system validation.

3. The coding of the core of the system is under a lot of pressure in that when the tests in (2)
are performed, if the system fails in an unacceptable way, there is no longer any convincing way to
demonstrate that the proofs going into (1) were valid. This means that the no-failure-mode concepts
had better be valid, and that the coding and early testing of a key core has to be done as carefully
as if a single failure in the core system validation would require abandoning the system and having
it re-written by a different development team. (Obviously one would not really throw the whole
thing out;’ the point is that to succeed, you have to design and code and pre-test as carefully as if
you were going to risk that.)

A necessary part of the design of this system is the design and implementation of the sort of core system
validation testing just described.

We are concerned that we were unable to find the sort of logical proof that most or all of the potential
unacceptable failure modes cannot occur, which would allow some confidence that the complexity of the system
won’t contribute to overall hard-to-explain, impossible-to-anticipate, unacceptable failure modes.

2.2 Using GME in BTeV

Use of GME is intended to be an integral part of the software development cycle. The reality of software
development for BTeV is that many different groups will be developing (and need to test and release) separate
modules.

We think that in order to be useful in the context of a large collaboration, there is a need to break up
the model into sub-models. This implies some sort of way to define external references and dependencies and
qualities that allow coupling, which is richer than just saying ”module A depends on modules B and C.”

Furthermore, GME faces a serious sociological hurdle: many BTeV users do note use Windows, most do
not prefer IDEs, and few currently use modeling tools. Some have had previous experience with other modeling
tools, and most of these previous experiences have been failures.

2.3 Using Chameleon in BTeV

BTeV authors will need to invent, implement, and install new elements quickly during a crisis. The ability to
use an alternative language such as Python would help reduce the learning curve and effort required to make
and test a new element.

2.4 Logging Changes in the Trigger System

It is critical to deal with logging any changes in the trigger system in great detail, so that physics information
isn’t lost. The example of changing prescales (while fictional) show this very well – if a prescale were changed,
the system must record what the prescale was at every time, and when was it changed. Even if modification of
prescales were not possible, other changes made by the system must be logged. There must be a standardized
and easy was to do this, and to make the data available wherever it is needed – not just at the graphical UI.

3 Physical Organization

BTeV has a build/release system that their members will expect to use. Chameleon needs to be presented as
a product to be used :

• headers to include

• libraries to link to

• executable tools to invoke

It must not be something that BTeV users are expected to add to. Thus the place that BTeV-written
element source code will be put must conform to BTeV’s build system, and not be a subdirectory of some
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Chameleon subdirectory. Chameleon must not require BTeV authors to modify or add to the Chameleon
product (including header files and source files). It must not be necessary to recompile any part of Chameleon
just because a BTeV user wants to create a new element or message.

Chameleon currently uses IMAKE as a build system. This is not the system with which BTeV authors
will be familiar, but that does not matter as long as Chameleon is delivered as a product ready for use. The
BTeV build system will place no more requirements on the physical design of Chameleon than those listed
above.

We recommend that even internally Chameleon should distinguish between core infrastructure and utility
elements. It should be possible to add new utility elements to the Chameleon product without needing to
modify infrastructure headers.

4 Build and Release Environment

It is necessary to be able to perform unit tests on BTeV-written ARMOR elements. One needs to have a
scaffolding to allow users to plug their elements into, and which will allow testing, without requiring the full
system to do so.

The BTeV release system will require tagged versions of infrastructure code. Although Chameleon will
not be under the control of the BTeV release system, it would be advantageous for BTeV (and for RTES) to
have a more controlled release system. Code versions in CVS need to be tagged with meaningful tag names, so
that one can refer to a specific version of Chameleon with assurance of the meaning of that version, and that
it works properly with other RTES products.

BTeV’s assurance that a new version of Chameleon meets their needs will be significantly enhanced by the
presence of sufficient testing in Chameleon itself. Absent such testing, BTeV will be required to do so itself.
This will at least lead to long delays in adoption of new versions of the code, and perhaps discourage BTeV
from the use of Chameleon.

5 The Messaging System

The current SC2003 design has a simplistic message handling system. This may be true of the core communi-
cation elements as well. It seems to be assumed that all the parts of a fully-deployed BTeV trigger system will
communicate in a binary compatible manner. It is very likely that this will not be the case. The BTeV trigger
system is likely to involve more than one variety of embedded processor; it is unlikely that BTeV would be
willing to be restrained to use only those processors which are binary-compatible. In addition, it is likely that
more than one variety of general-purpose processor will be used in the higher-level trigger systems. It is not
guaranteed that these processors will be binary-compatible, and even less likely that they will be compatible
with the embedded processors of Level 1.

It is crucial for the system to have a well-defined messaging protocol which deals with the problem of
translating between binary formats where necessary. It is also crucial that this system not impose any burden
in the embedded processor portion of the system, where the additional computational burden of translating
messages between the processor’s native format and some exchange format will be unacceptable.

It is also important that the details of dealing with different message formats (from different wire protocols,
for example) not be placed in the laps of the BTeV collaborators who will be writing element subclasses. These
details must be handled by the RTES infrastructure.

In the current design, the messages all share a single C++ type, mc message ct. Their informational type
is determined by an integral parameter passed along with the message. The implementation of this design has
a flaw that makes it unsuitable for use by BTeV. BTeV will need to invent new (informational) types fairly
often. In the current design, this means inventing new defined constants, and recompiling Chameleon. It is
unacceptable for BTeV to need to rebuild an external package every time a BTeV author invents a new message
type. Furthermore, these numbers (in the current design), must be globally unique – it would be disastrous for
the integer 5 to mean a different thing to a Level 1 node than it does to a Level 2 node. Thus splitting up the
headers to allow different systems to have different defined constants does not solve the problem. BTeV will
require a global message identification system, akin to the UUID of CORBA.

We also note that some sort of data verification (like a fast xor checksum) should be done on messages, even
in the embedded processors, to help assure that bit errors are not propagated silently.

In the current design, the class mc message ct is what the BTeV user would see; he would create an instance
of mc message ct, fill in its data, and send it along to the system. This class contains a vast amount of minutia
that should be hidden from the user. We expect that the typical BTeV author will be overwhelmed by the
complexity of the existing class. In addition, the part of the message that the user’s element cares about, the
payload, is dealt with entirely by user code. The degree of complexity left in the hands of the BTeV authors
is too large. The interface presented to the BTeV user must be considerably simpler than mc message ct. For
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example, BTeV will not be interested in using the key/value pair portion of the interface; if it is possible to
remove them to simplify the interface, it would help BTeV.

It is not clear how nameservice works in ARMORs. Jim indicated that it may be through files in an NFS
file system. This will need to be extended to be an actual robust nameserver.

Who assigns the severity of an error message? It shouldn’t be the generator of the message – he doesn’t have
enough information to decide. How does Category and Type and Priority factor in this? Who fills in Priority?
It should not be the sender. Can it be the receiver, or a middle-level ARMOR, which adds the information
when it is available? There needs to be some statement of policy about error messages.

There is additional related discussion in Section RTES message.

6 Software Engineering Practices

In this section, we have a somewhat random collection of observations about coding practices we observed in
the SC2003 prototype code.

6.1 Circular Dependencies

In order to support robust unit testing, it is important to avoid circular dependencies wherever possible. For
example, the classes element ct, compound ct, and armor ct are circularly coupled, so it is not possible to
thoroughly test any one of these in isolation.

6.2 Idiosyncratic use of do while

In several of the C modules we looked at, we find the following construct:

do
{
/* some bunch of work done here */

} while (0);

This loop is functionally the same as the linear flow of code:

/* some bunch of work done here */

However, when it spans over several screens, the do while construct misleads the reader to expect that
some looping is actually to be done. We can see no performance advantage to this construct, and significant
disadvantage to the ease of understanding.

6.3 Non-use of the C++ Standard Library

There is a widespread lack of use of the C++ Standard Library. C-style null terminated character arrays are
used instead of std::string ; fixed-size arrays are used instead of containers such as std::vector. We could find no
use of the standard algorithms of the standard library. C-style IO is used in place of the less error-prone C++
IO.

Bare pointers are used everywhere, making memory management unclear and frequently unsafe (especially
in regards to exception safety). Use of std::auto ptr, or the appropriate smart pointers from boost smart ptr,
would make the code both easier to understand and more robust.

The boost library provides other utilities which would be of benefit for Chameleon, and which BTeV will
use in other places. The boost thread library, for example, provides mutex and threads which have been widely
tested and which work on a wide variety of platforms.

6.4 Non-use of Standard Protocols

Where ever possible (certainly in the various Unix or Linux or Windows machines), communications should be
handled by a robust communications library (BEEP, XDR-RPC, HTTP are examples), rather than by home-
brewed solutions. The effort of RTES should be applied to the fault-tolerance related parts of the design, and
not dissipated in reproducing tools which are already available.

6.5 Use of chm assert

There is widespread use of chm assert, which is surprising in a fault-tolerance system. For example, we find
places where, if dynamic memory allocation fails, it seems that an assertion will be triggered. If this really
results in runtime failure of the system, this is not acceptable for the BTeV trigger system.
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6.6 Multithreading Issues

We did not have time to sufficiently investigate the locking system to evaluate the degree of thread safety in the
system. The handling in compound ct is rather complex. We note, for example, that RAII (resource acquisition
is initialization) is not used to handle lock objects, and so it is hard to tell whether all obtained locks are
released properly under all circumstances.

We are informed there were problems with deadlocks observed before the SC2003 demonstration, and are
therefore concerned with thread safety. This concern is heightened because the BTeV authors who will be
writing elements will certainly not be experts in the writing of thread-safe code.

It is critical that the Chameleon system be reliably thread-safe, and that it be very easy for the BTeV
authors to write element classes which do not damage the thread safety of the system.

6.7 Release Procedures and Testing

During the demonstration we ran into trouble because modifications had been made (to the ARMORs?), and
the display software could not deal with this. Is is possible to go back to an old version? What testing is in
place to allow a user to tell that a new component works with the system? Can we test without the graphical
front end? Can the front end be tested without the full set of ARMORs behind it? What is the mantra for
checking something in, to make sure broken components don’t get into a release?

We did not see adequate unit tests for any of the software. We strongly believe that these are necessary, not
only to get the initial system working but also to give confidence that the system still works after changes due
to enhancements and refactoring.

7 Overall Comments

7.1 Performance of the Demonstration System

We were concerned that during the demonstration of the SC2003 demo system, in what was supposed to be
“nominal” operating configuration, the system was losing about 20% of the events handled by the system.

7.2 Communication Performance

If stats messages are to appear at a high rate, then communication paths must be established and the connection
be long lived. Furthermore, the number of connections going from node to node must be minimized. An
algorithm that creates and destroys connections for every transaction will perform poorly.

7.3 Documentation

Much of the software has few comments. Especially important is something in each header to describe the
purpose of each class. BTeV users will need such documentation, so they understand the purpose of the classes.

7.4 VLAs

In the current system, the idea of ”a VLA” is very amorphous. We recommend turning this into a clearly
defined concept. The following questions need to be answered:

• What is the category of tasks to be handled by VLAs?

• What actions can be taken by a VLA?

• What actions are prohibited to a VLA?

• What are the constrained resources that may be used by a VLA? For each VLA, the definition
of that VLA should address how much of each resource may be used.

• Should there be a ”standard interface” for VLAs? Should there be points of similarity in some
other sense? If not, there should be a convincing reason why not. If so, details should be
presented.
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8 Analysis of Code

8.1 Forcing the User to Provide Boilerplate Code

Code like the following is commonly repeated; similar code appears in most functions for most ARMOR elements:

dword dsp monitor ct::get state (char *pachBuffer, dword *pcbBuffer)
{

chm assert (pachBuffer != NULL);
chm assert (pcbBuffer != NULL);

// Checkpoint state in base element ct class

dword cb = 0;
dword rc = element ct::get state (pachBuffer, &cb);
chm assert (rc == 0);
chm assert (cb > 0);

// Checkpoint information specific to dsp monitor ct element

char *pach = pachBuffer + cb;
chm assert (pach != NULL);

*pcbBuffer = pach - pachBuffer;

return 0;
}

In this example, two lines are really doing the work of the function, and the rest is ”boilerplate”. The burden
on the user could be lessened by application of the template method pattern (from the Gang of Four). There
are also other places in the code where this pattern would also make sense. The companion document show one
of these other places.

8.2 Concern About Thread Safety

Throughout most of the code we have reviewed, we find non-thread-safe code that appears intended for use in a
multithreaded environment. It might be useful in the modeling tools to indicate what functions are re-entrant
and what functions are not. In the section on Generator.c, we note one such instance of trouble; more can be
found elsewhere.

8.3 ckpt ct

This class has public data. Why is pointer-to-array-of-char used, rather than std::vector<char>, for example,
or anything else that is automatically managed?

One problem is that, by design, ckpt ct will be copied incorrectly, and so anything that inherits from it will
also not be copied correctly. If the intent is to make elements non-copyable, this should be done explicitly. If it
is not (and we see no reason that elements must be non-copyable), then all the base classes of element ct must
be copyable. Furthermore, if copying is allowed through the base class, then cloning (polymorphic copying)
must be supported.

What is the intent of the member functions of ckpt ct? For example, we find both get raw state and get state;
they take arguments of different types. The default implementation ignores the arguments and returns zero.
Presumably, for an element with no state, this is the correct behavior. (If not, then these functions should be
pure virtual.) For an element with state, what is the difference in intent?

8.4 RTES message

It does not seem that the information in the RTES message class is sufficient for BTeV’s use. We propose the
logical content of an RTES message be the following:

• an integer ID indicating the C++ data type of the data payload. This number must be a
unique identifier, automatically generated. There is probably an ID somewhere in Chameleon
to which this corresponds, but we are not sure which it is.

• an integer (NQ) telling the number of following qualities.
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• a sequence (of length NQ), containing integer IDs for various qualities assigned to the payload.
These quality IDs need to be centrally registered.

• an integer (ND) telling the number of bytes in the data payload.

• a sequence of bytes (of length ND), the data payload itself.

We have found this to be necessary in other cases, because we have found the need for things like elements
that respond to every ”error” type message, and other things that respond to every ”silicon” type message. The
categories are not mutually exclusive.

Of course, the sequence of integers does not have to be part of the physical message; it can be encoded in a
single integer. The choice of implementation is a matter of implementation efficiency.

8.5 element ct

What is the purpose of the public data members, some of which also have accessor methods? Public data
members are generally a mistake, unless the class is a clear value-type, e.g. std::pair<X,Y>.

What is the meaning of pcmpParent, which seems only to be used to get an id, if pcmpParent is non-null?
Who needs to get at the pointed-to compound ct? Similarly for parmor and the pointed-to armor ct? Why are
some variables named with the (unattractive) Hungarian notation (e.g. pcmpParent) while other are not (e.g.
id, et)?

We note that each element in the system contains a factory function, and that these are all of very similar
nature. It would be convenient for BTeV if they were provided with a macro which would write this function.
In addition to making the writing of an element easier, this would also make for easier maintenance. Without
such a facility, any change in the design of the factory function would require modification of every element
class in existence.

The factory mechanism has another significant omission. Users will want to be able to query the system
for a list of all elements which are available to a program. The existing factory mechanism does not allow this.
The common solution is to have a global registry of all elements known to the system, automatically populated
at program startup by the construction of objects of static lifetime. Each element would be required to have a
constructor with a given signature, and would also invoke a library-provided macro which deals with the issues
of registration. It is useful for this macro to also automatically handle tracking of version numbers. Several
examples of systems using this sort of solution can be provided on request.

The suggested look for each element is:

class some element ct {
public:
// Every element class must take a ConfigParams object.
explicit some element ct(const ConfigParams& c);

// ... whatever virtual functions of element need to be
// overridden,
// ... whatever additional functions are needed by
// some element ct

};

// CVS will replace $Name with the CVS tag for this
// release.
REGISTRY MACRO(some element ct, "$Name");

8.6 The Generator Package

We considered this package as an exemplar of all the packages developed for the embedded processors, with the
expectation that a critique of this one package will identify practices followed elsewhere. This package consists
of the files Generator.c, boxmuller.c, mt19337-1.c and poisson.c.

We find the presentation of interfaces for this module chaotic. Some of the function prototypes are found
in generator.h (note the difference in capitalization), but not all the function interfaces are there (for example,
poisson is missing). Some of the function prototypes are repeated in Generator.c, and the header generator.h
is also included. Other source code modules (for example, poisson.c) do not include the modules header. This
needs to be reorganized to meet with standard coding guidelines.

The file Generator.c contains some magic numbers:
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// defines of input and output port numbers
// THESE NEED TO CHANGED IF THE MODEL CHANGES!
#define SW OUT 0
#define PARAMS PORT 0

The note indicates that these values are not kept in agreement with the model by any automatic mechanism.
This will surely lead to lack of agreement. We find no tests that indicate the values have been verified. The
magic numbers must either come from a central repository, or from automatically generated code.

There is widespread use of global variables; Generator.c contains two blocks of them. Since they are not
static, they are visible to the entire program during linking. They are likely to lead to multiply defined symbols.
Even worse, these are global variables introduced in a thread function. If multiple threads are running this
same thread function, we have little faith that complicated modules programmed in this manner will function
correctly. Even something as simple as the Box-Muller implementation is not thread safe.

The file Generator.c also contains conditional compilation, hiding the fact that Generator is logically two
different functions:

#ifdef USE DSP BIOS
while(1)
{
#endif

/* a large inlined function body */

#ifdef USE DSP BIOS
TSK sleep(sleep time);

}
#endif

This organization hides the fact that there are two different programming models supported in this one
function. What happens if one needs to use the function in both models? What if there is a third programming
model to be added (for example, Windows or Linux for testing, vxWorks or OSE kernel for running in the
embedded processors)? How is the function to be tested?

We would prefer to see such code written in a layered approach:

• an explicit function, doing the equivalent of the ”inner function”

• a separate function that can be called as the ”thread function,” perhaps a different one for each
supported system.

We comment elsewhere on the idiosyncratic ”do {...} while(0)” loop.
The cut-and-paste method of programming in Generator.c has led to code with is both a maintenance burden

(it is harder to read than necessary) and inefficient (the same function, get input buffer, is called repeatedly).
The inefficiency is especially important when we consider the time-critical nature of the code which runs in the
embedded processors.

The function MakeOneEvent contains a mixture of the implementation of the function itself, interleaved
(via conditional compilation) with what seems to be testing code.

8.7 The PA Package

We understand that the organization of pa.c was influenced by the fact it was a throw-away development, for
use in the SC2003 prototype. However, we see nothing in pa.c that indicates the design for a more suitable
implementation is at hand. BTeV will need a framework that hides most of the complexity of the non-physics-
related code, so that they can concentrate on the physics tasks. They will expect to see a much higher-level
API, rather than the low-level details of interactions with VLAs, timers, etc. Jim tells us that David Berg’s
Level 1 framework document would be a reasonable starting point.

There is a small amount of such a framework in place; we note that start vla timer and reset vla timer
are called from the function PA. However, this is much too low-level an interface, even for a framework. We
would prefer to see a framework which uses functions like start process event and end process event, where the
start process event does whatever is necessary – starting a VLA timer, and whatever other actions are needed.
We have found this to be a useful abstraction in many other contexts; the sequences of actions to be taken often
need to be configurable.
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8.8 The Physicist’s View of the VLA

Above, we noted that the interface chosen for physicist’s interaction with the VLA is not at the right level of
abstraction. In the current design, physics applications are littered with the details of state handling. We would
prefer for this level of detail not to be in the face of the physicist programmer.

The proposed interface for the physics application to follow imposes insufficient structure. The developer
must be told in a clear manner:

• What situations may at one time or another be declared (by the system) for this module to
react to (e.g. process an event, you timed out, things were reconfigured, initialize).

• It must be made obvious that the module is required to provide a function to react to each
such possible declaration. Some implementations may be ”do nothing.”

This is very similar in concept to the creation of a C++ class which implements a specific abstract interface.
This structure should be enforced either by the model/development tool, or by the runtime system. And,

of course, unit tests should verify that all necessary functions have been supplied.
The implementation of start vla timer and reset vla timer both contain hard-coded constants, giving a

timeout value. Such a value must be a configuration parameter, to be set at runtime.

9 GME

9.1 Who Won’t use GME in BTeV

Some BTeV developers simply are not target users of GME. Features that would make GME unsuitable for
these users are not ”fair game” for this review to critique as a flaw; features which would help only these
(non-)customers should not be considered as desired capabilities. Here are some non-target user communities:

GME is a Windows-only tool. For much of BTeV, this makes it unattractive. Most BTeV users will not
be interested in using anything other than their ”normal” Linux systems. GME will not be used by BTeV
physicists doing analysis; it does not fit the ”business model.” It will also not be used to configure BTeV Monte
Carlo jobs which may well run on the trigger farm during pauses in data collection, again because it does not
fit the expectations of the BTeV community.

We expect that the Level 2 and Level 3 trigger executables will use the offline framework. This framework
already has a configuration mechanism. If GME is to be used to configure these executables, it must be able
to use the ”standard” BTeV configuration mechanism as a lower-level tool.

Developers of physics algorithms for the BTeV trigger will want to work in their normal environment, and
we do not want to put additional stumbling blocks in their way.

9.2 Who Might Use GME in RTES or BTeV

We can identify the following categories of potential users of GME:

• The BTeV developers and maintainers of Chameleon elements, VLAs, and any other source
code that contributes to state machine behaviors in BTeV. These people develop code to run
the trigger and detect faults, as opposed to code to do physics.

• BTeV members assembling and building the executables for the trigger system. There are sev-
eral types of executables. These include ARMOR executables, trigger and filter/reconstruction
executables, VLAs and Level 1 algorithms.

• BTeV members designing runtime configurations for existing executables. We assume that using
the runtime configurations is done outside the context of GME. Some of these configurations
may include: physics parameters used to configure the wide variety of physics algorithms;
communication links between various executables; locations at which executables will run; and
choice of fault-tolerance policies.

Considerations which make GME less appropriate for these types of use are ”fair game,” though in the end
it may be decided that GME will not be used for one or more of these purposes.

9.3 General Comments

9.3.1 Support for Rapid Development

It must be possible for BTeV shifters in the control room to be able to invent and quickly deploy new diagnostic
software in emergency situations. They must be able to do so with minimal impact on the running system. It
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must not be necessary to stop the running system to deploy new diagnostics. It is unclear to us how GME
helps in this situation. RTES should provide several use cases for BTeV that show how such situations can
be handled using GME. The tool must not cause an entire rebuild of a release due to one or a few files being
changed.

9.3.2 Scalability

In looking at the overall software aspect in the model ”system,” we find the diagram includes two buffer
managers. In the real system, there will be several hundred buffer managers. The existing diagram is not
scalable to handle this many elements. An diagram element that represents a collection of similar elements,
and their individual connectivities, is needed. The code generation must automatically handle configuration of
multiple elements – the user should not need to separately configure hundreds of nearly identical elements.

When a small change is made in the model (changing a single configuration parameter, for example), does
this require regeneration of all interpreter output, or does this produce only the output directly related to the
modified input? Generation of the entire output would be unacceptable.

If a model parameter that is a runtime value (such as a physics algorithm threshold) is changed, is any new
code generation done? Must any code be recompiled? Must any binary be rebuilt? Any of these results would
be unacceptable for BTeV.

9.3.3 Physical Coupling

GME must not generate monolithic files that create a huge amount of physical coupling. For this reason, we
do not think modeling the messages with GME would be necessary. Certainly assembling all the IDs into a
single header file would be inappropriate.

Code generated by the tool should meet the same code quality requirements placed on real developers. For
example, it must not generate any unnecessary physical coupling.

9.3.4 Transitory Nature of Generated Code

We do not like the placement of generated code into the repository. We believe that generated code is a
temporary artifact of the build system. The compiled results should be used to build libraries and executables,
but the generated code itself is disposable.

During the kickoff meeting for this review, it was mentioned that some of the generated code required hand
modification. What feature of GME made it inconvenient to produce the code directly using the tool? It would
be unacceptable for BTeV users to need to do the same.

9.3.5 User Interface to Resource Constraints

In the GME IDE, we found that many of the attributes associated with some of the elements conveyed little
meaning (and did not seem to be used). For example, in the detail box for the software primitive Generator.c, we
find ”object code size,” ”dynamic memory size,” and ”execution time.” While these are interesting quantities,
and important in an environment with significant resource constraints (e.g., limited size of dynamic memory
and time budget in a low level trigger), we observe that in the current system they are not being filled. Indeed,
we cannot see, in the current system, any way to fill them with meaningful data. The system should provide
ways to deal with some of these automatically, and tools which can be incorporated to deal with others.

There should be some mechanism to calculate and summarize the ussage of constrained resources, and to
report on their relations vis a vis global total constraints. Items that are constraints in this category should be
clearly labeled, and routinely checked by the model when the interpreter step is done. Items that are calculable
automatically should be calculated.

9.4 Versioning

Many versions of the model could correspond to a single production version of the BTeV software. Different
developers will need to work with different versions of the model without colliding with each other or with
the production release. BTeV will need to have several production versions in use at one time, and also an
arbitrarily large number of development versions. We have more to say in Section State Machine about the
versioning of code related to the state machine.

The tool must distinguish between a ”certified release” and ”certified runtime parameters” and allow them
to be manipulated separately.
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9.5 Communication APIs

Part of the purpose of a code generator (interpreter) for GME is to impose a specific protocol for the coupling of
software modules. The current code generator model (the task model) is a simple, low-level protocol, unsuitable
for use at BTeV.

It is critical for the interpreters to be easy to write and extend, because the needs of BTeV will not be clear
early on in the development cycle. It is nearly certain that several communications APIs will be devised, each
with its own realm of applicability.

9.6 Configuration Maintenance

In what format is the data saved from GME? Is there any way to have it automatically processed, outside the
graphical tool? It is stored in some database? Can it be queried?

If GME is to be used to configure all the software for the running trigger system, it will be necessary to be
able to capture a configuration state for use outside of the tool, and for the configuration data to be stored in
the standard BTeV production databases.

Is the configuration really all in code? If one wants to change a some numerical value (the number of nodes
above a threshold temperature before declaring a fire emergency), does new code have to be generated? This
would not be acceptable for the trigger application.

Does reconfiguring the system always entail recompiling code? Is this to happen in the control room, when
the users (people running a shift) just want to change a trigger configuration? What if one wants to start a
new run, which is allowed to use more processors than a previous run? What if one wants to add new data
output streams? What if one wants to change the level of informational output, to further study the reason for
a misbehavior? What if one is done with a study, and wants to make the system quiet again?

9.7 Comments on Existing Diagrams

In existing diagrams, we find that most of the labels of diagram elements are not descriptive. This makes it
very difficult to understand the diagrams. While we understand that the labels on the diagram must be terse,
there must be a way to associate a longer, more descriptive name with each diagram element. In the example
diagrams, this feature should be used.

We find that the existing diagrams do not reflect a consistent decomposition of systems. Some things are
aggregated that are really distinct elements (e.g. ”generator/switch”), and some things are not aggregated that
should be (e.g. ”buffer manager,” ”worker,” ”farmlet,” which really form a farmlet).

We are concerned that the meta-modeling is so hard to do that even the experts have a hard time in
producing a natural modeling language. The modeling language developed for the prototype system was so
difficult to use properly that the developers themselves failed to devise a natural decomposition of the example
system. It appears that a first pass at decomposition was put into the diagram, and later when it became
apparent that the decomposition was not quite right, the effort that would have been needed to perturb it was
too great and so it was left alone. Experimenters at the lab are even less like to correct initial flaws if the system
makes changes awkward. If the natural use isn’t easy, BTeV developers are likely to produce very confusing
models.

9.8 State Machine

How does one deal with supporting several different architectures? It is possible that more than one type of
embedded processor would be in the running system. Since the user of GME is writing snippets of C code in
the context of running GME, does this mean that it is possible that different versions of the snippets have to
be written for different processors?

The state machine as currently modeled relies exclusively on guards, and makes no use of event types. This
is bad for a variety of reasons:

1. One of the advantages of deterministic finite state machines is the ease of proving them
correct. The lack of distinct event types makes these state machines into something other
than DFSMs, and thus this advantage is lost.

2. If two guards may be passed, the system could end up in an indeterminate state – or rather,
one determined by the order of the code rather than by the guards themselves. The actions
for more than one state may be taken. The state actually reached is determined by the
last snippet of code to be run. This seems error prone.

3. It is inefficient, because each output state must execute its guard to decide if it is the
result of the transition. This seems to be the case even after the correct ”transition” has
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been handled. The scaling behavior is linear in the number of states to which a given
state may transition, which may lead to poor performance in a time-critical system.

The code implementing these guards is strewn with casts, magic variables, and magic numbers. The existing
examples are hard to read, and would not be acceptable by common coding standards.

The code implementing these guards is not under any apparent code versioning control. This code has
critical effects on the behavior of the system, and so it must be under version control.

The user of GME has to type fragments of complex C code into a small editing box, with poor editing
facilities. This code is then stitched together into the final code. This is a hard way to write code.

We would prefer to see the user deal with a higher-level, abstract view of a DFSM, and to have the generated
code hidden from the user. We would like the tool to automatically verify the transition table. This view of
the state transition table should be saved in CVS. The action code should be in named functions, which are
themselves stored in CVS. Of course, this code should be accompanied by unit tests. This would allow version
tracking of both the transition table and the actions, and thus of the functioning of the entire DFSM. The issue
of what version of a named function is associated with a specific version of the model needs to be solved.

10 Conclusion

We congratulate the authors on the successful deployment of working system to the SC2003 workshop.
In this document, we have raised the most significant concerns which we had while reviewing the SC2003

product. We invite the authors to contact us for clarification if any of the issues we have raised in this document
are unclear.
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