
Muon Reconstruction Review

Muon Reconstruction Review

Jim Kowalkowski
Marc Paterno

1 Introduction
This review considered the various packages related to muon reconstruction, excluding those that are pro-
vided the trf++ tracking package. The CVS packages were

• muo_data

• muo_dataprocessor

• muo_hitreco

• muo_segmentreco

• muo_trackreco

We considered both design issues and implementation issues, and address these in separate parts of this
document. Our talk from the July DØ workshop in Seattle was used as a guideline for our discussion of use
of the EDM and of the framework.

This document looks into the relationship of algorithm objects to data objects. Due to time considerations,
only the higher level data objects that appear in the event were considered. The intermediate segment
finding data objects such as LocalWireHit were only looked at briefly. Other areas this document covers
are C++ implementation issues such as memory management and code efficiency.

There are several areas we do not address in this document: the muon geometry classes, and the packages
muo_utils, muon_index and spacegeom.. We have omitted any analysis of these items for lack of time;
there are, however, passing comments concerning obvious deficiencies in these packages.

2 Overview
We were very happy to receive clear class diagrams and a clear high-level overview of the system. This
made the task of reviewing the software considerably easier than it would otherwise have been, and proba-
bly saved two or three days’ effort.

It is our current understanding that the algorithm code itself must be able to run in level 3 and in the offline
environments. This means that the algorithm cannot have direct visibility to the EDM classes (Chunk,
Event), or the framework classes (Package), or the level 3 “ tool” classes. The organizational concepts pre-
sent in the muon packages appear to be correct at the highest level. That is to say, the breakdown of
offline reconstructor package orchestrating the reconstruction by plucking items from the event, creating
and using algorithm objects it appropriate. The level 3 tools can do the same orchestration without the use
of the event or chunks if one is careful. Our intention was to produce a figure that illustrates our current
understanding of the system at a high level and the pieces that this report focuses on. Due to time con-
straints this is not possible. The talk from Onne Peters can be used for this purpose.

The “MuoDataProcessor” concept discussed at the review meeting seems to only appear in the hit finding
parts of the system. This concept is not employed in the segment and track finding parts. We were under
the impression after the review meeting that this was a fundamental principle that all the code was based
on. We also found that the current hit finding code does not do anything with the scintillator hits.

2.1 Definitions
Adaptor Class: A class that extends the functionality of another simpler class, not by inheritance, but by
containment. The containment is not by value but by pointer or reference. An adaptor class in this context
takes the object that it is extending as an argument to the constructor. The methods of the adaptor class call
down to the contained class and typically provide higher level services.

3 Major Concerns
We have several significant concerns regarding this software. These concerns have been divided into sev-
eral different groups:

1. Coding concerns: this includes matters of program correctness, safety and efficiency in the use of C++.

2. Design concerns: this concerns the larger-scale issues of design, especially of the appropriate use of
object-oriented and generic programming techniques, and appropriate use of DØ infrastructure code.

3. Management concerns: this includes matters of the software development and management process,
and adherence to the DØ software development guidelines.

3.1 Coding

3.1.1 Memory Management
Memory management is a disaster. When objects are created with new, it is critical that the ownership of
the object is clear at all times so that the memory can be cleaned up. Knowing the owner ensures that all
objects are destroyed and destroyed only once. Knowing this also will make sure that items are shared us-
ing pointers and references only when sharing is actually intended. There appears to be a fairly consistent
memory management policy throughout the code. We understand this policy to be:

Containers and objects are always created with new. Objects created
by functions are returned by pointer and it is the callers’ responsibility
to clean up the memory. Containers mostly hold pointers to objects.
Copying containers only copies the pointers.

We believe that this is not the proper memory management scheme for the problem. We further believe
that this scheme is the reason for the existence of the D0OM flavored objects that live in the event. This
scheme produced many inconsistencies and ambiguities in construction of the containers (copy vs. make
empty one). In most cases, the policy is followed for the creation of objects, and the memory is never re-
covered by the calling functions. The number of places this occurs is too numerous to include in this
document. This is probably the most important item that needs to be resolved and fixed. This will cause
the reconstruction executable to crash. This policy is likely to cause the code to perform very poorly,
partly because of the heavy copying and heavy use of the memory allocator.

Using this policy causes other subtle problem to appear, such as this piece of code in the track finding algo-
rithm:

MuoSegment Mat chLi s t xsl i st ;
…
/ / Sor t l i s t by mat chi ng qual i t y
xs l i s t . sor t () ;

The problem here is that this is a list of pointers. Sorting it does not sort by matching quality, it sorts by
ascending pointer value, which is typically useless and in error. The second problem here is that sorting a
list is very inefficient.

Muon Reconstruction Review

3.1.2 Error Reporting
There are basically two types of errors: global errors that affect the behavior of the program overall, and
local errors that only affect a single reconstructor or algorithm. A potential global error, for example, could
be that a data integrity check-sum has been used to detect an error in the current event data. The code that
detected the error will need to decide if the event should be considered by packages downstream of itself,
or if it should be throw away. This type of error impacts all the reconstuctors that are active. A local error,
for example, can be generated by a portion of the algorithm code that report if too many objects of a par-
ticular type have been produced from this event. This error may not be significant to any other
reconstructors and not affect the program behavior at all. Both of these are not handled in the muon code.

The first type of error is a problem for all reconstruction packages, because a policy has not been estab-
lished by the infrastructure group. Currently attempts are made to return error codes and print simple
messages to the console. Both of these are bad. Printing messages to cout just causes confusion, especially
if the message does not contain context. In most cases the return codes are not properly propagated up the
call change where decision about continuing can be made.

3.1.3 Miscellaneous
When a reference to a chunk is retrieved from the event into a Thandle<>, it should never be removed from
the Thandle<>. Under no circumstances should it be removed. Many of the reconstructors pull the chunk
pointers from the Thandle<>. Some of the extractions actually cause the const nature of the object to be
lost. The Thandle is there to protect you and the information in the event, extracting its contents defeats
this purpose.

In several places we found constants that were hard-coded into the algorithm implementation files. Many
of these constants should be retrieved via RCP or from a geometry/hardware configuration database. One
should avoid coding any constants into the application that may need to be changed in the future or that
may vary with time. These constants are typically impossible to track down when changes need to be
made.

3.2 Design

3.2.1 Template Strategy and Algorithm Objects
The use of a class template for MuoDataProcessor<> provides no gain at the great expense of complexity.
All of the MuoDataProcessors, as used in the algorithms, are really just functions. The normal overloaded
function mechanism of C++ would suffice. The functions that comprise an algorithm really need to be
composed into an algorithm object; one that can be configurable through RCP or another means.

Templates are good for expressing commonality of structure between many classes (algorithms in this
case). The only commonality expressed by the MuoDataProcessor template is that the single static method
has the same “processData” and that it takes two arguments and returns one thing. This is much too trivial
a requirement to consider templates as a viable solution.

The MuoSegmentReco package appears to use a more appropriate strategy. Here there is an abstract base
class for the algorithm and a concrete implementation. The reconstructor creates the algorithm, which can
perhaps be chosen by looking at an RCP value, then invokes it to carry out the work. We are hoping this
model can be expanded upon in favor of the MuoDataProcessor model.

It is unclear exactly what the MuoTrackReco package will be doing in this respect. We found differences
in strategies between t00.67.00 and t00.68.00 that could not be explained. The strategy from the ‘68 ver-
sion appeared to be moving towards the MuoSegmentReco model. The strategy of the ’67 version appears
to be a Fortran-like model. We did not spend very much time looking into this area.

3.2.2 Problem Decomposition
In looking through the algorithms, we had a difficult time telling what exactly the algorithm was and what
it was actually doing. One of our concerns is that we could not tell what manipulations are completely de-
fined by the detector design (fixed angle calculation, fixed relationships of components) and which were
actually algorithmic, or higher level items. The specific example we use in this document is the PDT hit
finding function. Here the loop through timing values in the channel looks at all pairs of wires in the chan-
nel. We could not discern, for example, what combinations of wires were physically possible and which
were not, or if the angle and point calculations were properties of the channel or strictly determined by the
algorithm (if the calculation could various between algorithms that make wire hits from PDTChannels).
What we would have like to have seen would be a clear separation of things that go into making decisions
about what is a wire hit from things that do simple calculations. The calculation here being defined as one
that has to do entirely with the design of the detector and would not change if the wire hit finding algorithm
changed. We do not mean to pick on this particular piece of code; it was a small enough piece for us to go
over and discover this problem. Most of the code suffers from the same problem.

The source of this problem is that the algorithm has not been decomposed properly into manageable units.
Many of the tasks are performed directly by the algorithm code, as opposed to utilities and tools. The tasks
perform operations on dumb data structures rather then real objects with behavior.

3.2.3 Hit Storage
The hit storage container MuoHitCollection appears to be not very useful as it stands. Having the two
multimaps appear together all the time does not seem to be a good idea, judging from how the algorithms
are written. We are under the impression that in some sections of the detector, the hits referred to in tracks
can be either wire hits or scintillator hits. The current MuoHitCollection does not facilitate this effort and
does not provide adequate services to perform this function. The current design will most likely lead to
more of the problems described in the previous section. Another problem that will likely occur will be
when segments currently refer to the hits they contain by MuoIndex only. The only way to determine if it
is a ScintHit or a WireHit would be to check the bits in the MuoIndex, and then go to the correct multimap
in the MuoHitCollection. This is not a clean way for users of the segments and tracks to navigate to the hit
objects.

3.2.4 D0OM Object Versions
Throughout the code, we could not see a need to have persistent derivations of basic data objects. Doing
this creates more classes then are needed and forces copies of many objects to occur. We believe that this
strategy exists because of the memory management policies and because algorithms return newly created
objects.

3.2.5 EDM and Framework Usage
The muon reconstruction code makes poor use of the Event Model. There are no interesting functions in the
event data classes (chunks) and no selectors to find them. The talk that we gave at the Seattle D0 workshop
discusses good chunk design and should be used as a starting point. The reconstructors (framework pack-
ages) that produce chunks do not fill in important details into the chunk such as parentage. The
reconstructors that find chunks in the event do not use keys in any interesting way and do not use selectors.
Locating objects in the event as the reconstructors do will essentially return any chunk of that type. If more
than one chunk exists of that type in the event, then there is no guarantee you will get the correct chunk.

Segments refer to hits using a vector of MuoIndex. It will be difficult to tell if the hit is a scint or wire hit.
More tools will be needed for extracting scint or wire hits if this is the strategy that will remain.

3.2.6 Use of Common D0 Tools and Utilities
In several places the standard D0 tools are not being used or the standard tools are being replaced by cus-
tom ones. Section 4.1 on recommendations contains a detailed discussion about this.

Muon Reconstruction Review

3.3 Testing
The component tests throughout the muon code are mostly dummies. This is really not acceptable. Sec-
tion 8 has a more detailed explanation of testing.

4 Design Recommendations
Several of the design issues that we found in this set of packages are present in other D0 packages.

4.1 Common D0 libraries and Tools
There is a large amount of low-level utility code available to developers at D0. In many cases we find that
developers re-implement these utilities or work around missing features by producing large amounts of
code directly in the algorithm. In other cases developers simply do not know that utilities and tools exist.
We see this problem in the muon code. It is not possible to cover every case, but we can discuss a few that
we have found. We use these three examples because each illustrates a different type of problem:

(1) perhaps dislike for a particular set of classes, so re-implementation occurs,

(2) missing features, so ugly code appears surrounding its use, and

(3) inadequacies in a class cause duplication of effort.

4.1.1 SpacePoint / CartesionPoint
In many sections of the code, points in space are represented by an array of three doubles. A standard
package called spacegeom exists that has several classes designed to represent points in space. Working
with a standard object is the correct thing to do, so all users can share an understanding of how the object
works and feel comfortable looking through code that is not part of their subsystem. The muon_geometry
actually uses the SpacePoint and CartesionPoint objects, but then chooses to pick the information out and
present it in a different representation.

If the classes in the spacegeom package are not adequate because of memory usage, performance, or inter-
face, then the owners of that package should be approached so that changes can be made to the classes.
The use of a non-object such as an array of doubles is particularly bad; you cannot even do simple opera-
tions such as copy the point unless you hand-code a loop. Copying the point (array of doubles) in this case
is a huge distraction from what the algorithm is actually doing and a potential spot for a bug.

4.1.2 UnpDataChunk
The extraction of channels from modules in the UnpDataChunk in the muon code is quite hideous and un-
pleasant (like kissing alpaca lips). It is hideous in terms of understandability, resilience to change,
processing time, and memory usage. The bit manipulations make it difficult to change the underlying
classes – because you have intimate knowledge of internal details in the high-level application code. The
PDTChannels and MDTChannels, for example, are hefty and require quite a bit of work and memory to
copy.

Talking to the Author of UnpDataChunk about the PDTChannel and MDTChannel use case could greatly
simplify your life and this code. Adding two small utilities that allow for extraction of channels and mod-
ules of a particular type from the UnpDataChunk - by pointer, not by value – could reduce the code in the
algorithm down to two or three lines that are clear and easy to understand.

4.1.3 MuoIndex
After the review result meeting on 12/16/1999, we had the impression that MuoIndex was not going to be
used in the level 3 algorithm because of its size. This means that the algorithm will be completely different
code in level 3 that does the exact same thing because the offline requires the use of MuoIndex. This is a
shame.

If size is the major concern here, then a simple conversion with Mike Fortner could show that this object
can be reduced in size by perhaps nine times if need be. If the MuoIndex is not adequate for level 3, then
the owner of MuoIndex should be approached to see if it can be made acceptable for level 3.

4.2 Classes with Useful Features
There are many classes in the muon packages that are essentially featureless data structures. In many cases,
these classes can be made to do work that the algorithms and user of them need. A simple example is the
ListOfPoints class in the segment finding algorithm. Here the ListOfPoints is just an STL vec-
tor<LocalPoint*>. When looking through code that uses this class, it quickly becomes clear that the user
code must implement functionality that should really be part of the class itself. An example is the mark-
Hits() method of the MuoSegementAlgCombi class. Here marking all the hits used in the ListOfPoints
should be a method of the ListOfPoints class. Inheritance can be used to extend the functionality of the
vector and list classes to add things like markHits(). Moving markHits() to the ListOfPoints class puts this
function where it belongs and allows this action to occur correctly with a single method call. Many of the
collection classes (typedefs) suffer from this problem.

4.3 Example MuoHitProcessor Changes
We were going to present a couple of snapshots of the MuoHitProcessor code, each showing specific
changes that can be made. Unfortunately that would take more time than we have. Instead, the final ver-
sion parts are shown below, along with explanations of what they do. The intention is not to show exactly
how this code should be modified; rather, it is to show what sort of modifications are needed to many parts
of the code, to enhance the maintainability of the code and to easily track down problems. This describes
how to do away with the hit processing class templates, and to replace them with meaningful configurable
algorithm objects. Much of the MuoHitProcessor is used here and as the example in this document. A few
examples are given from the segment finding algorithm to illustrate to sort of things that should be done
there. The hope here is that these MuoHitProcessor changes can be used as a model for the segment and
track finding algorithms. This piece of algorithm code was chosen because it does should not involve
chunks or any EDM related classes. The EDM related pieces of the system are left to another section of
this document.

4.3.1 Example MuoHitCollection Changes
In the current design the MuoHitCollection is really just a pair of multimaps put together with a couple
utility methods to aid in the insertion of hits. Other then this, the maps are really used separately by the
code. Judging from the fact that hits are referred to in segments by MuoIndex only, we made the assump-
tion that the most interesting high-level use of hits will be “give be all the wire hits associated with this
MuoIndex” or “give be all the scint hits associated with this MuoIndex” or “give me all the MuoHits asso-
ciated with this MuoIndex. If this is true, then giving the user a list or vector of hits seems appropriate and
natural instead of a beginning and ending iterator of a multimap. Our example here assumes that this is
how one wants to operate with hits. Similar techniques can be used even if our thinking does not exactly
match reality.

The first thing we will do is separate the two types of hits into separate objects and provide functions to aid
in the insertion hits. Notice that the base object here that hits are stored in is a map of MuoIndex -> vector
of hits.

t empl at e <c l ass HI T, cl ass CONT = s t d: : vect or <HI T> >
cl ass Hi t Cont ai ner : publ i c s t d: : map<MuoI ndex, CONT> {
publ i c :

t ypedef HI T hi t _t ype;

Hi t Cont ai ner () { }

bool i nser t Hi t (const HI T& hi t) {
 pai r <i t er at or , bool > I (f i nd(hi t . i ndex()) , t r ue) ;
 i f (I . f i r s t ==end())

Muon Reconstruction Review

I =i nser t (val ue_t ype(hi t . i ndex() , dat a_t ype())) ;
 i f (I . second==t r ue)

I . f i r s t . push_back(hi t) ;
 r et ur n I . second;
}

} ;

t ypedef Hi t Cont ai ner <MuoWi r eHi t > Wi r eHi t Map;
t ypedef Hi t Cont ai ner <MuoSci nt Hi t > Sc i nt Hi t Map;

/ / t hi s coul d be a met hod of t he Hi t Cont ai ner c l ass
t empl at e <c l ass CONT, c l ass RET>
voi d ext r ac t AsHi t s (const CONT& cont , RET& f i l l me) {

f or (CONT: : const _i t er at or i t =cont . begi n() ; i t ! =cont . end() ; ++i t)
f i l l me. push_back(&(* i t) . second) ;

}

voi d use_exampl e_f unc(const Wi r eHi t Map& wh, const Sci nt Hi t Map& sh) {
vect or <MuoHi t s* > shar ed_common;
ext r ac t AsHi t s(wh, shar ed_common) ;
ext r ac t AsHi t s(sh, shar ed_common) ;
sor t (shar ed_common. begi n() , shar ed_common. end()) ;
. . . use al l t he hi t s i n t her e base f or mat . . .

}

It is likely that organization such as this and this use of templates is overkill for a small part such as col-
lecting hits.

4.3.2 Example Channel Adapter Utility Classes
As we looked through the PDT and MDT hit finding code, we immediately noticed that extended channel
classes could help out quite a bit. Two new classes are introduced here to assist in channel related opera-
tions. Both are derived from a common base class.

cl ass Hi t Channel
{
publ i c :

Hi t Channel (const Channel & c) { . . . set pr i vat e i nf o. . . }

const MuoI ndex& i ndex() const { r et ur n _i ndex; }
const MuoSect i onI ndex& sect i onI ndex() const { r et ur n _sect i on; }
const Car t es i onPoi nt & posi t i on() const { r et ur n _pos; }
const Car t es i onPoi nt & or i ent at i on() const { r et ur n _or i ; }

pr ot ect ed:
Hi t Channel (const Channel & c , const MuoI ndex& m) { . . . set pr i vat e i nf o. . . }

const Channel * _chan;
MuoI ndex _i ndex;
MuoSect i onI ndex _sect i on;
Car t es i onPoi nt _pos;
Car t es i onPoi nt _or i ;

st at i c MuoI ndexTr ans _i ndex_t r ans;
} ;

cl ass Ti mePai r s
{
publ i c :

Ti mePai r s() : _t 1(0.) , _t 2(0.) . _has_i nf o(f al se) { }
Ti mePai r s(doubl e t 1, doubl e t 2, doubl e wi r e_l en, doubl e angl e) :

_t 1(t 1) , _t 2(t 2)
{ _has_i nf o=T1T2ToTDTAPDT(_t 1, _t 2, wi r e_l en, _t d, _t a) &&

TDTAToDr Di s t AxDi s t PDT(_t d, f abs(_t a) , angl e, _xd, _xa) ; }

/ / j us t guest ed at t he appr opr i at e names her e
doubl e dr i f t Ti me() const { r et ur n _t d; }
doubl e ax i al Ti me() const { r et ur n _t a; }

doubl e dr i f t Di s t ance() const { r et ur n _xd; }
doubl e ax i al Di s t ance() const { r et ur n _xa; }

bool hasI nf o() const { r et ur n _has_i nf o; }
pr i vat e:

doubl e _t 1, _t 2;
doubl e _xd, _xa, _t d, _t a;
bool _has_i nf o;

} ;

cl ass Hi t PDTChannel : publ i c Hi t Channel
{
publ i c :

Hi t PDTChannel (const PDTChannel & c) : Hi t Channel (c) { . . . }

const MuoGeomPDT* get PDT() const ;
doubl e wi r eLengt h() const ;
doubl e axDi s t ToTi me() const ;
doubl e angl e() const ;
Hi t PDTChannel next () ;

/ / t hi s i s onl y a sampl e - can be done much bet t er (shoul d not be i nl i ne)
voi d val i dTi mePai r s(vect or <Ti mePai r s>& f i l l me) const {

f i l l me. c l ear () ;
doubl e angl e = chan. angl e() ;
doubl e l en = chan. wi r eLengt h() ;
f or (i nt i 1=0; i 1<chan. numEvenTi mes() ; ++i 1) {

f or (i nt i 2=0; i 2<chan. numOf f Ti mes() ; ++i 2) {
Ti mePai r t (chan. t i meEven(i 1) , chan. t i meOdd(i 2) , l en, angl e) ;
i f (t . hasI nf o() ==t r ue) f i l l me. push_back(t) ;

}
}

}

pr i vat e:
const MuoGeomPDT* _pdt ;

} ;

cl ass Hi t MDTChannel : publ i c Hi t Channel
{
publ i c :

Hi t MDTChannel (const MDTChannel & c) :
_hi t _wi r e(. . cal c. . .) , Hi t Channel (c) { . . . }

st at i c doubl e bi nSi ze() { r et ur n 18. 8; } / / i s t hi s r eal l y f i xed?

const MuoGeomMDT* get MDT() const ;
const MuoI ndex& wi r eI ndex() const ;
const Car t es i onPoi nt & wi r ePos i t i on() const ;
const Car t es i onPoi nt & wi r eOr i ent at i on() const ;
doubl e wi r eLengt h() const ;
doubl e dr i f t Di s t ance() const ;
doubl e t of () const ;
doubl e wi r eLengt h0() const ;
doubl e wi r eDl () const ;
doubl e di st anceToOr i gi n() const ;
doubl e dr i f t Ti me() const ;

pr i vat e:
MuoI ndex _wi r e_i ndex;
i nt _hi t _wi r e;
const MuoGeomMDT* _mdt ;
Car t es i onPoi nt _wpos i t i on;
Car t es i onPoi nt _wor i ent at i on;

} ;

Muon Reconstruction Review

4.3.3 Example HitBuilder Algorithm Object
As mentioned in the concerns and problems section, an algorithm object is needed to replace the “MuoDa-
taProcessor” template and functions. The functions that find the UnpDataChunk and use the Event are
removed; the code that does this should live directly in the reconstructor. Here is an example of how the
PDT and MDT hit finding code can be represented by an algorithm object. It is important to note that we
assumed that classes such as CartesianPoint support multiplication by a scalar or another point, and also
support addition and subtraction – after all, this is one of the benefits of using C++.

cl ass Hi t Bui l der {
publ i c :
 t ypedef const vect or <const PDTChannel * > PDTChannel s;
 t ypedef const vect or <const MDTChannel * > MDTChannel s;

 Hi t Bui l der (RCP r) ;
 v i r t ual ~Hi t Bui l der () { }

 v i r t ual voi d bui l dWi r eHi t s(PDTChannel s& chans, Wi r eHi t Map& hi t s) = 0;
 v i r t ual voi d bui l dWi r eHi t s(MDTChannel s& chans, Wi r eHi t Map& hi t s) = 0;

 voi d bui l dWi r eHi t s (PDTChannel s& c1, MDTChannel s& c2, Wi r eHi t Map& hi t s)
{ bui l dWi r eHi t s (c1, hi t s) ; bui l dWi r eHi t s(c2, hi t s) ; }

 / / v i r t ual voi d bui l dSci nt Hi t s (. . .) = 0; / / f ut ur e use

pr i vat e:
 s t at i c doubl e speedOf Li ght () { r et ur n 29. 98; } / / cm/ ns
 / / j us t assume t hat al l t hese come f r om RCP
 doubl e v_dr i f t ;
 doubl e v_axi al ;
 doubl e dr i f t _er r or ;
 doubl e max_t i me_di f ;
 doubl e x_d_max;
 doubl e del ay;
} ;

cl ass Si mpl eHi t Bui l der : publ i c Hi t Bui l der { . . . } ;

/ / The i mpl ement at i on of t he wi r e hi t bui l di ng usi ng PDTChannel s coul d be as f ol l ows:
Si mpl eHi t Bui l der : : bui l dWi r eHi t s(PDTChannel & chans, Wi r eHi t Map& hi t s) {

vect or <Ti mePai r > pai r s;
PDTChannel : : const _i t er at or i t er = chans. begi n() ;
f or (; i t er ! =chans. end() ; ++i t er) {

Hi t PDTChannel chan(* i t er) ;

 i f (chan. get PDT() ==0)
 {

 / / l og an er r or us i ng t he er r or l ogger
 / / assume t hat channel dat a i s bad and t hat we cannot cont i nue
 / / t hr ow speci f i c except i on

 }

chan. val i dTi mePai r s(pai r s) ;
 doubl e wi r e_l en_cent ;
 doubl e dr i f t _er r or = 0. 1* xd;

vect or <Ti mePai r >: : i t er at or t i t er = pai r s . begi n() ;

f or (; t i t er ! =pai r s . end() ; ++t i t er)
{

dr i f t _er r or =0. 1 * (* t i t er) . ax i al Di s t ance() ;

i f ((* t i t er) . ax i al Ti me() <=0)
{

Hi t PDTChannel nchan(chan. next ()) ;
wi r e_l en_cent = . 5 * nchan. wi r eLengt h() - (* t i t er) . ax i al Di s t ance() ;

 hi t s. i nser t Hi t (MuoWi r eHi t (
Pos i t i on(

nchan. pos i t i on() - (wi r e_l en_cent * nchan. or i ent at i on()) ,

_ax i al _t i me_er r or * nchan. or i ent at i on() ,
) ,
nchan. i ndex() ,
(* t i t er) . dr i f t Ti me() ,
(* t i t er) . dr i f t Di s t ance() ,
dr i f t Er r or

)) ;
}
el se
{

wi r e_l en_cent = . 5 * chan. wi r eLengt h() - (* t i t er) . ax i al Di st ance() ;

 hi t s. i nser t Hi t (MuoWi r eHi t (
Pos i t i on(

chan. pos i t i on() - (wi r e_l en_cent * chan. or i ent at i on()) ,
_ax i al _t i me_er r or * chan. or i ent at i on() ,

) ,
chan. i ndex() ,
(* t i t er) . dr i f t Ti me() ,
(* t i t er) . dr i f t Di s t ance() ,
dr i f t Er r or

)) ;
}

 }
}

}

/ / The i mpl ement at i on of t he wi r e hi t bui l di ng usi ng MDTChannel s coul d be as f ol l ows:
Si mpl eHi t Bui l der : : bui l dWi r eHi t s(MDTChannel & chans, Wi r eHi t Map& hi t s) {

MDTChannel : : const _i t er at or i t er = chans. begi n() ;
f or (; i ! =chans. end() ; ++i) {

Hi t MDTChannel chan(* i t er) ;

i f (chan. get MDT() ==0)
 {

/ / l og an er r or us i ng t he er r or l ogger
/ / assume t hat channel dat a i s bad and t hat we cannot cont i nue
/ / t hr ow speci f i c except i on

 }

i f (chan. noTi me() ==t r ue)
 {

/ / I s t hi s i t f or t he message ????? I s t hi s an er r or ?
 / / " No t i me i n MDT t ube"

}
 el se

{
/ / Her e we l eave t he pos_er r or and dr i f t _er r cal cul at i on i n t he al gor i t hm
/ / i ns t ead of l et t i ng t he channel c l ass do i t . Thi s may not be
/ / necessar y .

 doubl e dr i f t di s t _er r = 0. 1 * chan. dr i f t Di s t ance() ;

 hi t s. i nser t Hi t (MuoWi r eHi t (
 Pos i t i on(

chan. wi r ePos i t i on() ,
(. 5 * chan. wi r eLengt h()) * chan. wi r eOr i ent at i on()

) ,
 chan. i ndex() ,
 chan. dr i f t Ti me() ,
 chan. dr i f t Di st ance() ,
 dr i f t di s t _er r

)) ;
}

}
}

Muon Reconstruction Review

4.4 EDM Use
The design tutorial present by us at the Seattle D0 workshop should be used as a simple guide. Here are
some of the key issues:

• D0OM allows STL collections of objects (not pointers) to persist automatically without the need to
inherit from D0_Object. With the proper reorganization and memory management plan, all of the per-
sistent collections should be able to fit into this model. This has already been discussed briefly and
will be elaborated on in following sections.

• There are other options for referring to collections of hits at the segment level and collections of seg-
ments at the track level. The LinkVectorIndex<> and LinkVectorPtr<> classes may simplify the use of
the muon chunks.

• If transient versions of information that lives in a chunk are needed, such as collections of pointers to
hits, then use of the D0OM utilities for creating transient data automatically may be needed such as
activate() and deactivate().

• Redesign of the MuoHitCollection to separate the two maps. The Chunk provides utilities to gather
pointers from both maps into one vector or list of pointers (to the base hit class). Part of this has al-
ready been discussed earlier in this document.

A muon hit chunk to support many of things discussed in this document could look as follows. A chunk
organized like MuoHitChunk below allows the use of the edm links. Unfortunately, because of level3 re-
quirements, the segment and track chunks may not be able to take advantage of this without a bit more
work than can be presented in this document. The second chunk in this code segment shows how one
might refer to hits in the MuoHitChunk using the edm link classes. The important thing here is the first
MuoHitChunk, the HitUser* examples can be looked at as a secondary issue.

cl ass MuoHi t Chunk : publ i c edm: : AbsChunk
{
 CHUNK_SETUP(MuoHi t Chunk) ;
publ i c :
 / / f ul l ser v i ce chunk f or use wi t h edm l i nks
 t ypedef s t d: : vect or <MuoHi t * > CommonHi t s ;

 MuoHi t Chunk() ;
 ~MuoHi t Chunk() ;

 l i s t <edm: : ChunkI D> par ent s() const ;
 l i s t <edm: : RCPI D> r cps() const ;
 l i s t <edm: : EnvI D> envi r onment () const ;
 voi d pr i nt Chunk(os t r eam& out) const ;

 / / access separ at e pi eces
 const Wi r eHi t Map& wi r eHi t Cont ent s() const { r et ur n _wi r e_hi t s; }
 Wi r eHi t Map& wi r eHi t Cont ent s() { r et ur n _wi r e_hi t s ; }
 const Sci nt Hi t Map& sc i nt Hi t Cont ent s() const { r et ur n _sci nt _hi t s ; }
 Sci nt Hi t Map& sc i nt Hi t Cont ent s() { r et ur n _sci nt _hi t s ; }

 / / shoul d i nc l ude t hese s t andar d access met hods
 Wi r eHi t Map: : dat a_t ype& wi r eHi t At (Wi r eHi t Map: : key_t ype i ndex) ;
 Sci nt Hi t Map: : dat a_t ype& sci nt Hi t At (Sc i nt Hi t Map: : key: : t ype i ndex) ;
 CommonHi t s : : val ue_t ype& at (CommonHi t s : : s i ze_t ype i ndex) ;

 / / al l ow f or mor e t han one t ype of obj ec t l ookup. . .
 s t r uct Wi r eHi t Lookup {
 const Wi r eHi t Map: : dat a_t ype* oper at or () (const MuoHi t Chunk* c,

Wi r eHi t Map: : key_t ype i)
{ r et ur n &(c- >wi r eHi t At (i)) ; }

 } ;
 s t r uct Sc i nt Hi t Lookup {
 const Sc i nt Hi t Map: : dat a_t ype* oper at or () (const MuoHi t Chunk* c ,

Sc i nt Hi t Map: : key_t ype i)
{ r et ur n &(c- >sci nt Hi t At (i)) ; }

 } ;

 / / t r eat al l hi t s t he same
 CommonHi t s& cont ent s()

{ i f (_al l r eady==f al se) bui l dHi t s () ; r et ur n _al l _hi t s; }
 const CommonHi t s& cont ent s() const

{ i f (_al l r eady==f al se bui l dHi t s() ; r et ur n _al l _hi t s ; }

pr i vat e:
 voi d bui l dHi t s() const { . . . put al l hi t s i n _al l _hi t s and set f l ag. . . }
 Wi r eHi t Map _wi r e_hi t s ;
 Sci nt Hi t Map _sc i nt _hi t s;
 mut abl e CommonHi t s _al l _hi t s ;
 mut abl e _al l r eady;
} ;

/ / exampl e of how a user chunk MI GHT l ook, us i ng t he edm l i nks
cl ass Hi t User Segment
{
publ i c :
 edm: : Li nk I ndexVect or <MuoHi t > Hi t Li nks;

 Hi t Li nks& hi t Cont ent s() { r et ur n _hi t s ; }
 const Hi t Li nks& hi t Cont ent s() const { r et ur n _hi t s; }
 Hi t Li s t : : I ndexLi st & cont ent s() { r et ur n _hi t s . cont ent s() ; }
 const Hi t Li s t : : I ndexLi st & cont ent s() const { r et ur n _hi t s . cont ent s() ; }

 voi d set Hi t Chunk(edm: : AbsChunk* c) { _hi t s . set Li nkVal ues(c) ; }
 voi d compl et eLi nks(const edm: : AbsChunk* c) const
 { edm: : f i ni shUpLi nk(hi t s , c) ; }
 . . .
pr i vat e:
 Hi t Li nks _hi t s;
 Car t es i onPoi nt _posi t i on;
 Car t es i onPoi nt _di r ec t i on;
 doubl e _qual i t y ;
 doubl e _angl eDr ;
} ;
t ypedef s t d: : vect or <HI t User Segment > Hi t User Segment s ;

cl ass Hi t User Chunk : publ i c edm: : AbsChunk
{
 CHUNK_SETUP(Hi t User Chunk) ;
publ i c :
 Hi t User Chunk() ;
 ~Hi t User Chunk() ;

 . . . st andar d chunk st uf f . . .

 Hi t User Chunk: : val ue_t ype& at (Hi t User Chunk: : si ze_t ype i ndex)
{ doLi nks() ; r et ur n _segment s [i ndex] ; }

 const Hi t User Chunk: : val ue_t ype& at (Hi t User Chunk: : si ze_t ype i ndex) const
{ doLi nks() ; r et ur n _segment s [i ndex] ; }

 Hi t User Segment s& cont ent s()
{ doLi nks() ; r et ur n _segment s ; }

 const Hi t User Segment s& cont ent s() const
{ doLi nks() ; r et ur n _segment s ; }

pr i vat e:
 voi d doLi nks() const
 {
 i f (l i nksDone==t r ue) r et ur n;
 f or (Hi t User Segment s: : const _i t er at or i =_segment s . begi n() ;

i ! =_segment s . end() ; ++i)
 (* i) . compl et eLi nks(t hi s) ;
 l i nksDone=t r ue;
 }

 Hi t User Segment s _segment s ;
#i f ndef __CI NT__
 mut abl e bool l i nksDone;
#endi f

Muon Reconstruction Review

} ;

/ / exampl e use of t hi s Hi t User Chunk obj ect
voi d f unc(THandl e<Hi t User Chunk> uchunk)
{
 const Hi t User Segment s& segs = uchunk- >cont ent s() ;
 Hi t User Segment : : const _i t er at or i = segs. begi n()
 f or (; i ! =segs. end() ; ++i)
 {
 Li nkPt r Vect or <MuoHi t Chunk, MuoHi t > uv((* t i t er) . hi t Cont ent s()) ;
 Li nkPt r Vect or <MuoHi t Chunk, MuoHi t >: : const _i t er at or hi t er ;

 f or (hi t er =uv. begi n() ; hi t er ! =uv. end() ; ++hi t er)
 cout << (* hi t er) - >pos i t i on() << endl ;
 }
}

As mentioned in the section on concerns, the selection of chunks from the event is not adequate. Most of
the code looks like the following:

/ / Get MuoHi t Chunk.
 const TKey<MuoHi t Chunk> muonhi t Key;
 THandl e<MuoHi t Chunk> pt r muonChunk=muonhi t Key. f i nd(event) ;

 i f (pt r muonChunk. i sVal i d()) {
…

}

This will find ANY chunk of that type in the event, not necessarily the one that is desired. The chunks
should at least have some distinguishing feature that one can use, such as algorithm name and version, or
RCPID. If you are unsure, all the chunks of a given type should be retrieved, so a fair decision can be
made as to which one to use. When a chunk such as MuoSegmentChunk is created, it must record the
ChunkID of the MuoHitChunk that was used to construct it. This is the only way to ensure that when users
want to go back to the hits that are contained in the segment, they can be sure to get the correct Muo-
HitChunk.

4.5 Framework Use
The event processing framework has evolved some over the past year. None of the static methods in the
reco classes are required and should be removed. There are two important points that need to be made in
this section. One is that reconstructor should do some of the work, such as locating chunks in the event and
driving the algorithm. Activities that are related to working directly with the framework, the EDM, or
D0OM can be done directly in the framework package. The reconstructors (packages) can be tested outside
the framework main routine. Another item of interest here is what the muon hit processing reconstructor
could look like given the proposed changes.

4.5.1 Testing
The framework has a feature that allows one to construct a framework package outside the framework main
program. This feature is useful for testing reconstructors (framework packages) that you write. This facil-
ity creates an instance of your package and passes it back to you. You can call the processEvent method or
any other method yourself to do testing. Here is an example of its use:

#i nc l ude “ MyPackage. hpp”
#i nc l ude “ f r amewor k/ Test i ng. hpp”
i nt mai n(i nt ar gc, char * ar gv[]) {

s t r i ng r cp_i nf o = ar gv[1] ;
MyPackage* mi ne;
Fwk: : makePackage(mi ne, r cp_i nf o) ;
… open a t est i nput f i l e or pr epar e a t est event somehow …

Event * e = get Event (…) ;
mi ne- >pr ocessEvent (e) ;
… dump r esul t s …
del et e mi ne;

}

4.5.2 Example Reconstructor
Here we present a major part of what the muon hit processing framework package could look like. We
would have liked to do a similar job with the segment and track reco packages, but it would take too much
time.

MuoHi t Reco: : MuoHi t Reco(Cont ext * c) : Package(c)
{

st r i ng al go = packageRCP() . get St r i ng(" Al gor i t hm") ;

i f (al go == " St andar d")
_hi t _bui l der = new Si mpl eHi t Bui l der (packageRCP()) ;

el se
{

er r or _l og(ELabor t , " i ni t) << " Bad al gor i t hm t ype " << al go << endmsg;
t hr ow BadSel ect i on(" Bad al gor i t hm t ype") ;

}
. . . do ot her s t uf f her e . . .

}

Resul t MuoHi t Reco: : pr ocessEvent (Event & event)
{

/ / UnpDat aChunk sel ect i on r emai ned unchanged f r om t he cur r ent code
 UnpChunkSel ect or sel ec(D0MCH: : MUO_FE) ;
 const TKey<UnpDat aChunk> unpKey(sel ec) ;
 THandl e<UnpDat aChunk> unpchunk=unpKey. f i nd(event) ;

 i f (unpchunk. i sVal i d() ==f al se)
 {

er r or _l og(ELwar ni ng, " mi ssi ng dat a") << " No UnpDat aChunk f ound i n event " << endmsg;
r et ur n Resul t : : success; / / because no er r or pol i cy def i ned

 }

vect or <PDTChannel * > pdt _chans;
vect or <MDTChannel * > mdt _chans;
ext r ac t Channel s(unpdat a, pdt _chans) ; / / f i l l s pdt _chans
ext r act Channel s(unpdat a, mdt _chans) ; / / f i l l s mdt _chans

aut o_pt r <MuoHi t Chunk> chunk(new MuoHi t Chunk) ;

t r y {
_hi t _bui l der - >bui l dWi r eHi t s (pdt _chans, mdt _chans, chunk- >wi r eHi t Cont ent s()) ;

}
cat ch(const except i on& e) {

/ / l og message or do somet hi ng i nt er est i ng
}

i nser t Chunk(event , chunk) ;
}

5 Coding Recommendations

5.1 Memory Management
Our recommendation is to change from methods and functions returning newly created objects by pointer
to using a fill method. It is easiest to illustrate this through an example:

/ / ol d cr eat e- on- heap met hod
MuoHi t Col l ec t i on* pr ocessDat a(Thandl e<UnpDat aChunk> unp) {

Muon Reconstruction Review

. . . do s t uf f . . .
r et ur n new MuoHi t Col l ec t i on(. . .) ;

}

/ / ol d met hod use
voi d f unc(. . .) {

. . . do s t uf f . . .
Thandl e<UnpDat aChunk> unpdat a = . . . f i nd chunk i n event . . .
MuoHi t Col l ec t i on* hi t s = pr ocessDat a(unpdat a) ;
. . . use i t , copy i nf o t o chunk and del et e i t . . .
MuoHi t Chunk chunk(* hi t s) ;
. . . i nser t chunk i nt o event
del et e hi t s ;

}

/ / new f i l l met hod
voi d pr ocessDat a(Thandl e<UnpDat aChunk> unp, Wi r eHi t Col l ec t i on& hi t s) {

hi t s. c l ear () ;
f or each hi t f ound {

. . . do s t uf f . . .
hi t s. push_back(Wi r eHi t (. . .)) ;

}
}

/ / new f i l l met hod use
voi d f unc(. . .) {

Thandl e<UnpDat aChunk> unpdat a = . . . f i nd chunk i n event . . .
MuoHi t Chunk chunk;
Pr ocessDat a(unpdat a, chunk. wi r eHi t s ()) ;

}

The fill method forces the lower-level functions and methods to put the things they generate directly into
the container where they belong, instead of into an intermediate place. This style of memory management
removes the need for D0OM versions of classes and also removes a large amount of the copying that needs
to go on in the current code. It also reduces the number of interactions with the heap manager and makes it
clear who the owner of the memory is.

5.2 Use of UnpDataChunk
It has been recommended that Mike Fortner add a couple of utilities to make working with the UnpDa-
taChunk simpler for the user. What drove this recommendation was the code in the MuoHitProcessor that
copies PDTChannels and MDTChannels out of the UnpDataChunk. Here we recommend using the new
utilities, as well as not copying the channels and using the vector of channel pointers that is returned from
the new utilities. Here is a quick outline of what has been proposed and an example use of it.

voi d exampl e_f unc(THandl e<UnpDat aChunk> unpdat a)
{

…
vect or <PDTChannel * > pdt _chans;
vect or <MDTChannel * > mdt _chans;
ext r act Channel s(unpdat a, pdt _chans) ; / / f i l l s pdt _chans
ext r act Channel s(unpdat a, mdt _chans) ; / / f i l l s mdt _chans

/ / or one can do…
vect or <PDTModul e* > pdt _mods;
vect or <MDTModul e* > mdt _mods;
ext r act Modul es(unpdat a, pdt _mods) ;
ext r act Modul es(unpdat a, mdt _mods) ;
…

}

The exact name of the utilities and arguments to them will be up to Mike Fortner to decide. This simple
utility reduces the code in MuoHitProcessor.cpp to just a few lines that are easy to understand and clean.

5.3 General

5.3.1 Const private members
We have noticed that many classes contain private const data members (of things other than pointers and
references). For references or pointers this makes sense, especially if the class does not own the instances
and just looks at them. For built-in types such as int and double, and for instances that are owned by the
class, this does not make any sense. After all, only the class itself can modify the variables in the private
section anywhere, so why put this extra restriction in place. An example is MuoSegment. Here none of
these variables need to be const.

cl ass MuoSegment {
…
pr i vat e:
 const MuoI ndexVect or _muoI ndexVect or ;
 const Posi t i on _posi t i on;
 const Di r ect i on _di r ect i on;
 const doubl e _qual i t y;
 doubl e _angl eDr ;
} ;

Furthermore, methods or functions that take const build-it types as arguments should be changed. Doing
this has no effect and the compiler is supposed to warn you about it. Unfortunately these warning have
been turned off at D0. An example is:

ext er n bool TDTAToDr Di st AxDi st PDT(const doubl e t d, const doubl e t a,
 const doubl e angl e,
 doubl e& dr i f t _di st , doubl e& axi al _di s t) ;

The const double here serves absolutely no purpose and should be changed to just double.

5.3.2 Using THandle<>
When using object retrieved from the event, do not remove the object from the THandle<> class that sur-
rounds it. Use the smart pointer THandle<> as it should be used.

5.3.3 Argument Names
Use descriptive names for arguments to methods and functions, especially if all the arguments are doubles.
Here is an example from MuoHitProcess.cpp where we could not tell if there was an error or not:

Muon Reconstruction Review

…
/ / code f r om MuoHi t Pr ocessor
bool t i me_conver si on = T1T2ToTDTAPDT(t 1, t 2, wi r e_l engt h, t d, t a) ;
i f (t i me_conver si on && TDTAToDr Di st AxDi st PDT(t d, f abs(t a) , angl e, xd, xa))
…

/ / f unct i on pr ot ot ypes f r om muo_ut i l package:
ext er n bool T1T2ToTDTAPDT(const doubl e t 1,
 const doubl e t 2,
 const doubl e wi r el engt h,
 doubl e& t a,
 doubl e& t d) ;

ext er n bool TDTAToDr Di st AxDi st PDT(const doubl e t d,
 const doubl e t a,
 const doubl e angl e,
 doubl e& dr i f t _di st ,
 doubl e& axi al _di st) ;

Look closely at the arguments ta and td of T1T2ToTDTAPDT(), in the prototype and the code that uses it.
They appear to be switched. This is difficult to detect using the compiler because both are doubles. More
descriptive names could help. Event better would be to create a simple object that takes the two timing
values as arguments and produces the values ta and td using methods:

cl ass PDTt 1t 2Tot dt aConver t er / / t hi s i s not a good name
{
publ i c:

PDTt 1t 2Tot dt aConver t er (doubl e t 1, doubl e t 2) : _t 1(t 1) , _t 2(t 2) { }
doubl e get TAxi al (doubl e wi r el engt h) ;
doubl e get TDi st ance(doubl e wi r el engt h) ;

pr i vat e:
doubl e _t 1, _t 2;

} ;

Now it is difficult to make a mistake and get the wrong values. The example changes to PDT hit processor
use this method.

5.3.4 Illegal Constructs
Goto statements should never be used.

5.4 Error Reporting
Exceptions should be used for reporting and generating errors. In the problem section above, we refer to
both global and local error reporting. The framework does not have a policy defined for handling standard
exceptions thrown by packages (global errors); it currently just prints the message in the exception and ex-
its. The muon packages need to define exceptions that will be used for local error reporting and use them
internally. The error logger can be used directly by the exception classes or used by the algorithm code to
issue warnings or important informational messages. It is important to note that the error logger cannot
alter program flow, its purpose is to record errors by level and type. All use of error codes should be re-
moved.

5.4.1 Global Error Handling
Here we would like to present some preliminary ideas of how global errors can be handled. The most ob-
vious global error case is the detection of bad data in the event. The action here could be to throw out the

event completely or put it into a bad event file. In any case, further processing should not be done on this
event. A standard set of base exception classes can be made available by the framework, such as
“ScrapEvent” , “KillProgram”, and “ByPassThisDetector” . Algorithms would create their own exception
by deriving from these base classes. The framework should not dictate the actions of these exceptions,
instead, RCP values should define what happens when the framework catches these exceptions. The cur-
rent policy of always returning “Success” to the framework from a package is not adequate.

5.4.2 Local Error Handling
New exceptions introduced by the muon packages should derive from the STL exception classes. All of
these exceptions are required to produce a text string that explains the error that occurred. Use of excep-
tions is a nice way to propagate errors up a call stack without constantly using if-then-else structures and
return codes at all levels. The example MuoHitProcessor code that we provided shows a simple use of ex-
ceptions. Here is an example of using the error logger to report a warning:

er r or _l og(ELwar ni ng, " bad_dat a”)
<< " No t i me i nf o i n channel " << * i t er << endmsg;

The framework sets up the variable error_log as part of the protected section of the Package class. You
may need to create a private error_log variable in low-level algorithm code. To create a private error_log
variable, one can do the following:

#i nc l ude " Er r or Logger / Er r or Log. h"
…
Er r or Log er r or _l og(“ MuoHi t Pr ocessor ”) ; / / package/ al gor i t hm name

Below is an example of a simple exception.

#i nc l ude <st dexcept >
cl ass MuoBadDat a : publ i c r unt i me_er r or {
publ i c:

MuoBadDat a(st r i ng package, s t r i ng t ext) :
 r unt i me_er r or (t ype() + package + t ext) { }

MuoBadDat a(Er r or Log& e, s t r i ng package, st r i ng t ext) :
 r unt i me_er r or (t ype() + package + t ext)
 { e(ELer r or , t ype()) << t ext << endmsg; }

Pr i vat e:
st at i c st r i ng t ype() { r et ur n “ MuoBadDat a” ; }

} ;

This example optionally logs a message to the error logger (in a very simplistic manner). The exceptions
should be throw at the point where the error occurs. The exception should be caught at a level appropriate
for handling the error. In the MuoHitProcessor code, it could very well be at the reconstructor level. This
means that intermediate levels do nothing about the error – it will be propagated through this layer of code.
Doing this makes the code more manageable and easier to follow.

5.5 Package Organization
All using declarations (example: using edm::ChunkID) must be removed from headers. (They are fine in
.cpp files). Putting using declarations in the header files opens up the namespaces to everyone that includes
the header file. In all cases this is not desirable.

Extraneous headers should be removed (example: MuoTrackChunk.hpp includes 11 headers; 5 are not
needed). In many cases, long build times can be attributed in part to this. Including header files that are
not really needed causes unnecessary dependency generation and hence, unnecessary rebuilding of files.
Coupled to this is the use of forward declarations. Forward declarations of classes should be used in header
files wherever possible. The only time a header file for another class needs to be included is if an instance

Muon Reconstruction Review

of the class is present in the class that is being defined. If other classes are used by pointer or reference
only, they can be forward declared.

6 Physical Design
At a high-level the physical design appears to be adequate. An important objective here is to use the exact
same algorithm code in offline and in level3. Unfortunately we see that in several cases the algorithm
functions are contained in the same implementation files as the code that plucks the information from the
event. Doing this really defeats the purpose of breaking the problem apart. We have heard that level3 may
want to do releases separate from the offline, if this is the case, then common or shared algorithm pieces
really need to live in separate packages or libraries.

The segment reconstructor lives in the same package as the segment finding algorithm. This organization
will not allow the algorithm to be used in level3, where reconstructors do not exist. The track reconstructor
package likely has the same problems.

7 Documentation
The documentation in these packages is better then we found elsewhere. Some of the UML diagram have
incorrect use of symbols and relationship; this was a small point of confusion. Some of the algorithm code
is commented quite heavily and this was essential to figuring out what the algorithm actually did. Unfortu-
nately a few of the comments were inconsistent with code and in several cases explained what was going
on in terms of variables such as xa, t1, and t2. It would have been much more useful to have one block of
comments at the top of the file, using the MuoHitProcessor as an example, explaining the algorithm in
terms of the physical hardware that is manipulates and in terms of a mathematical formula. We needed to
find an expert in muon geometry and hardware readout to understand this code.

8 Testing
Providing component tests can really prevent d0reco from dying on silly errors that could have been de-
tected and corrected very early on. There is likely to be much finger pointing when d0reco crashes,
component tests can be used to show that you are not to blame. If you are to blame for the crash, then the
test programs can aid in the discovery of the actual problems. Component tests do not need to be complex
and exercise every little bit of code. Do whatever you can to get tests in this code – use the CTBuild model
or use the test directory model for a set of executables that test parts of the system.

It was mentioned in the review meeting that in some cases test data is needed and that this is typically diffi-
cult to get and use. We will again use the MuoHitProcessor as an example. One way to test this would be
to collect a bunch of channel data and run the algorithm on it, comparing the results with what you discov-
ered by hand. Another way would be to prepare a channel with information that you already know the
outcome. This is quite simple to do. Now prepare a test that attempts to find the hit or hits in this single
fabricated channel. If a test like this cannot easily be done, then the design of the code is wrong. You
should be able to exercise the core parts of the algorithm separately if the problem has been decomposed
properly.

9 Conclusion
We did not have the time to walk through the segment and track finding code to the same degree as the hit
finding code. We believe it suffers from the same problems. One small clue is the code appearance on
paper. A subroutine or method that has many nested levels of braces for if-then-else and do-while struc-
tures is likely to suffer from decomposition problems. It is likely that the subroutines and methods in
question are doing too much – stepping out of their realm of expertise. Any further analysis or review of
this code should be done interactively with the authors. We would really like to have gone through the
segment/track finding code to make recommendation about marking hits and using STL for selections and
sorting.

The examples prepared for this document were not walked through in any formal fashion and are not guar-
anteed to be completely accurate in respect to the hit finding algorithm (or any other algorithm for that
matter). Please notify the authors if errors or inconsistencies are found.

