Lattice QCD Workflows:
a case study

Luciano Piccoli - Fermilab, lIT

for the LQCD group
Dec 10 2008

Outline

e Problem Definition

e Motivation

e Lattice QCD Workflows

e Requirements

e Askalon and Swift Comparison
e Conclusions & Future Work

Problem Definition

e QCD (Quantum Chromodynamics): theory of the
strong force

— Describes the binding of quarks by gluons to make
particles such as neutrons and protons.

e LQCD (Lattice QCD): numerical simulation of QCD

— Space and time are discretized on a four dimensional
lattice.

— Used to test the Standard Model, physicists take
experimental data and compare to the theoretical
predictions of QCD.

e Differences may indicate new physics, for example, explaining why
the universe is dominated by matter and has so little anti-matter

Problem Definition

e On a parallel computer, the lattice is
divided among all the nodes.

e Computations require execution of
series of parallel jobs

— Communication require a high-speed
low-latency network

— Codes fine tuned to exploit capabilities of
underlying architectures

e Dedicated commodity clusters

Motivation

e Composition tools, control environment and
monitoring system are not standardized across users.

e Typical development cycle:

#!/bin/sh

Modify & $ m‘
Restart Workflow N 4 Submission

Definition

Check Output & Log
D D Files

]

Lattice QCD Workflows

e Configuration Generation

— Creation of ensembles of gluon configurations using the
same physics parameters.

— Tuning and production phases.
— Markov sequence.
e Analysis Campaign
— Prediction particle mass and decay constants.

— Independent sub-workflow for each configuration file.
— Size of workflow dependent on physics parameters.

Lattice QCD Workflows

Physics
Parameters

OO

Tuning

Production

O-B-O-R -

-0-R-OR-OROD

/|

Configuration
Generation

Analysis
Campaign

/

Physics
Parameters

& O -

Requirements

e Common issues and problems
— Standard workflow notation.
— Recovery from hardware and software failures.

— Ability quickly find products based on physics
properties.

e Production level workflow management
system
— Support most requirements.
— Extensible to provide missing features.

Requirements

e Templates: generic workflows, reused by
easily changing physics parameters. Avoids
copies and modifications to existing

workflows. % %J éj

e |Instances: concrete workflow generated from
the template for specific parameters.

X=10; Y=10; Z=10; T=100:; n
mass=0.4, 0.5, 0.6; ...

Requirements

e Execution: schedule of participants based on
resolved dependencies.

PBS/Torque %

e Monitoring: ability to check workflow
progress allowing quickly detection of
problems.

Ov.x «— E
€ == §§§

10

Requirements

e Execution History: maintain records and collect
statistics for accounting and heIp on predicting

running times.
é°é°
@wt

e Multiple Workflows: support and manage concurrent
workflow execution. ¢ &
— Global optimizations Q 1>

11

Requirements

e Quality of Service: maintain priorities, keep
expected running time, limitation of running
participants, e.g. avoid /O bottlenecks.

e Input Data: stage in large gauge input files for
analysis campaigns.

12

Requirements

e Fault Tolerance: provide recovery actions for
failed workflow executions. Participant level

restarting is acceptable.

e Data Provenance: essential to trace file
origins, including physics input parameters.
Ability to query on parameters.

— What is the algorithm version? :
— Input parameters? X=10; Y=10; Z=10; T=100; 35’*

mass=0.4, 0.5, 0.6; ...
3,—'&!)

13

Requirements

e Campaign Execution: execution of a long-term
workflow, subject to many type of failures
(e.g. power outage).

e Dispatch Campaigns: ability to submit and
extend campaigns.

14

Evaluation

Tested systems: Askalon and Swift

Implementation of configuration generation
and analysis campaign workflows

Can these systems provide functionality or
allow extensions to meet LQCD needs?

Can we use these systems to run LQCD
production workflows?

15

Askalon

e Task coordination and visualization system by
DPS research group (Innsbruck, Austria).

e Workflow specified in the Abstract Grid
Workflow Language (AGWL).

e Client interface independent from enactment
engine.

16

Askalon

Compose S
Monitor
[]
e |
= e Execution
= =T Statistics

Submit

i ASKALON

Weh Services >

Information

|
Grid Infrastructure >

17

Swift

e Developed by Argonne National Laboratory
and the University of Chicago Computation
Institute.

e Scripting language for specification, execution,
and management of large-scale science and
engineering workflows.

e Based on the Virtual Data System (VDS).

18

Swift

myType file[]; SWiI ﬁﬂ‘-
myType output func (myType input) {
: app { .
e func.sh -i input -0 output Compile
}
}
any

G out = func(in) Karaje}n 2

workflow. swift Execution 55
Engine
Monitor

workflow.log 16

Templates and Instances

¥ ASKALON
e Templates are e Templates are described in
, SwiftScript.
representEd in AGWL — Participants are procedures.
(XML-based). — Input and output parameters
(files) define data
— Graphical and textual dependencies.
workflow representation ® Physics input parameters
is provided. =—— for workflow instances are

f=____] provided as input or

e Physics input : defined within the script.

parameters for Sl Decoupling templates from
F| : instances require changes in

workflow Instances are the script or addition of

specified in starting wrappers.

node.

20

Workflow Execution

¥ ASKALON
e Execution requires

participants to be first
registered at remote
sites

— Description of
executable, input and
output parameters

— Participants submitted
through GRAM to local
scheduler.

Execution starts with

SwiftScript being compiled
into a Karajan description.

— Local scheduler polled for
completed participants.

— Participants launched when
input files are present.

— Participants statically mapped
via configuration files.

21

Workflow Monitoring and History

= ASKALON
e Monitoring available on e Monitoring available
same workflow through the log file
composition interface. generated at run time.
— Decoupled from — One file per workflow
execution engine. Instance.
— Detailed monitoring e Execution history is
retrieved from database. provided at workflow
* Execution history kept instance level by log
in database used for files.

execution prediction.

22

Multiple Workflows

B ASKALON
e Askalon architecture

allows the execution of
multiple workflows.

— Independently create,
submit and monitor
workflows.

e Hooks provided for
adding functionality to
the execution engine.

— Coordinate campaigns to
optimize resource
utilization.

e Multiple workflows
require multiple
independent instances
of the Karajan
execution engine.

— Coordination of
resources must be
provided by lower
layers.

23

Quality of Service and Input Files

¥4 ASKALON

e Quality of service e Quality of service
features not available at features not available,
test time. must be provided by
— Modular design allows services used by Swift.

extensions. e Prefetching of input

e |nput data must be data is not supported
staged in by — Swift checks for
participants presence of files.

— No support for
automatically fetching
necessary files.

24

Fault Tolerance

¥ ASKALON
e Participant fault e Participant fault
tolerance provided by tolerance provided by
submitting computation retrying execution n
to alternative sites. times.
— Not an option for LQCD. — System wide setting.
— Addition of external e Failed workflows can
ever?ts using notification be resumed by invoking
PETVIEE Swift and the log file.

e e.g. node failures o
— Participants already

* No workflow fault executed are skipped.
tolerance.

25

Data Provenance

¥4 ASKALON
e Data provenance is not e Data provenance is not
provided. Only yet available.
information regarding — Mine information from
workflow execution. trace log files.
— Possibility to add — Implemented in Swift’s
provenance information predecessor.

in existing database.

26

Analysis Campaigns

== ASKALON
e Campaign execution e Campaign execution
through sub-workflows based on SwiftScript
(one for each functions or by

submitting independent

figuration file).
configuration file) Swift sub-workflows for

* Dispatching campaign each ensemble file.
by submitting workflow Dispatch campaign by
to Askalon service. invoking Swift

— Extension of running — Extension of running
campaign not possible campaign not possible

(dynamic workflow) (dynamic workflow)

27

Composition and Installation

¥ ASKALON
e Configuration Generation e Configuration Generation
— Simple workflow, easy to — Use of additional control files
describe. for tuning phase.
e Analysis Campaign e Analysis Campaign
— Not possible to model full — Difficulties mapping between
parallelism within analysis of actual files and types.

aniensemuiaiie e Installation process very

e |Installation process simple.
required assistance from
developers for installation
of local server.

28

Summary Comparison

Requirement % ASKALON

Data provenance Provenance on Dependency graph
execution only

Participant fault Retries on different Retries n times

tolerance sites

Workflow fault None Resume from failed

tolerance participant

Progress monitoring Workflow instance and | Status reported to log
participant tracking file

Campaign execution Available. No campaign | Limited support
extension

Execution history Postgres database Log files

29

Conclusions

e Workflow systems are constantly evolving

e No single system fill all requirements

— Extensible Askalon architecture allows additions to meet
LQCD needs.

— Swift: lightweight, language not straightforward.
e Fault tolerance

— LQCD needs a workflow tool that can integrate with
cluster monitoring systems.

e Data provenance

— Allow physicists to quickly find files based on input physics
parameters

30

Future Work

e Implementation of workflows using Pegasus
and Kepler.

e Currently developing front-end for data
provenance and parameter tracking.
— Address provenance and fault tolerance issues.

— Independent of workflow system.

31

Thanks

e Askalon developers Kassian Plankensteiner
and Simon Ostermann for helping to install
Askalon at Fermilab and quick response to any
issues found.

e Swift developers Mihael Hategan, Yong Zhao
and Mike Wilde for helping to implement and
debug LQCD workflows.

32

	Lattice QCD Workflows:�a case study
	Outline
	Problem Definition
	Problem Definition
	Motivation
	Lattice QCD Workflows
	Lattice QCD Workflows
	Requirements
	Requirements
	Requirements
	Requirements
	Requirements
	Requirements
	Requirements
	Evaluation
	Askalon
	Askalon
	Swift
	Swift
	Templates and Instances
	Workflow Execution
	Workflow Monitoring and History
	Multiple Workflows
	Quality of Service and Input Files
	Fault Tolerance
	Data Provenance
	Analysis Campaigns
	Composition and Installation
	Summary Comparison
	Conclusions
	Future Work
	Thanks

