
Lattice QCD Workflows
A Case Study

Luciano Piccoli1,2, James B. Kowalkowski1, James N. Simone1, Xian-He Sun2, Hui Jin2, Donald J. Holmgren1,
Nirmal Seenu1, Amitoj G. Singh1

1Fermi National Accelerator Laboratory, Batavia, IL, USA 60510
2Illinois Institute of Technology, Chicago, IL, USA 60616

piccoli@fnal.gov

Abstract—This paper discusses the application of existing
workflow management systems to a real world science
application (LQCD). Typical workflows and execution
environment used in production are described. Requirements
for the LQCD production system are discussed. The workflow
management systems Askalon and Swift were tested by
implementing the LQCD workflows and evaluated against the
requirements. We report our findings and future work.

Workflow; workflow management; lattice QCD

I. INTRODUCTION
Quantum ChromoDynamics (QCD) is the theory of the

strong force that describes the binding of quarks by gluons to
make particles such as neutrons and protons. Lattice
Quantum ChromoDynamics (LQCD) is the numerical
simulation of QCD. Its calculations allow us to understand
the results of particle and nuclear physics experiments in
terms of QCD. LQCD is both computation and data
intensive, and it is representative of large scale scientific
computing.

The typical routine of a scientist running a series of
LQCD computations can be roughly described by the
following steps: copy previous workflow script; change
parameters in the file (e.g. quark masses); run the modified
script; check periodically whether jobs are running; in case
of an error look for the cause in the several produced log
files; fix problem and repeat until all the processing
succeeds.

As new problems are detected the script is modified to
perform additional checking and run recovering procedures.
This cycle repeats until achieving a stable version, which is
later constantly copied and modified with new application
parameters. Despite the ability to produce science, this
methodology lacks fundamental aspects that allow scientists
to devote most of their time to make science instead of
constantly fixing and monitoring workflow scripts.

Groups of scientist within the LQCD collaboration use
different tools and methods to coordinate the workflows.
Perl, Python or shell scripts are used for invoking the
sequence of MPI-based applications; input parameters are
kept within the scripts or even hardcoded in the applications
themselves; and generated files are stored in a shared area
and saved to tape as needed.

Workflow Management Systems (WMS) promote
productivity and standardization on this type of environment.
WMS are successfully used for scientific applications, such
as plasma fusion simulations [1] and earthquake analysis and
simulations [2] among others. Our goal is to evaluate
existing systems for use in production scale of LQCD
experiments.

In this paper we present the LQCD experience with
WMS. After an analysis of typical LQCD workflows and
environment (section II) we conduct a description of
requirements for a WMS (section III). A couple of WMS
were tested with LQCD workflows and our findings
regarding the requirements are reported on section IV. In
section V we discuss the workflow composition and
execution. Conclusions and future work are presented on
section VI.

II. LATTICE QCD WORKFLOWS
LQCD computations are typically divided into two

workflows: configuration generation and analysis
campaigns. The former generates collections of files
(ensembles) which are used as inputs to the latter. Both
workflows require coordination of physics parameters,
cluster parameters, binaries, input and output files. They
have distinct flow characteristics as described in the
following paragraphs.

The configuration generation workflow (see Fig. 1) is
responsible for creating ensembles. An ensemble is an
ordered collection of gluon configurations sharing the same
physics parameters e.g. lattice spacing (or QCD coupling
strength), number of sea quarks and sea quark masses.
Configurations are generated in a Markov sequence.

At each step, the last configuration serves as the starting
gluon configuration which is evolved forward in simulation
time by Monte Carlo techniques. At regular intervals in
Monte Carlo simulation time, gluon configuration snapshots
are saved. An ensemble may contain a fork where more than
one Monte Carlo evolution sequence was started from the
same input configuration.

The configuration generation process has two phases:
tuning and production. The workflows have a small
distinction. The tuning process finishes when self
consistency of input parameters and output values is reached,
while the production phase repeats for a number of pre-

Fourth IEEE International Conference on eScience

978-0-7695-3535-7/08 $25.00 © 2008 IEEE

DOI 10.1109/eScience.2008.168

620

defined user input steps. In addition to the ensemble,
metadata are generated within log and standard output files.
Processing of configuration generation accounts for
approximately 40% of the total time dedicated for LQCD.

The analysis campaign workflows are a coordinated set
of calculations aimed at determining a set of specific physics
quantities. For example, predicting the mass and decay
constant of a specific particle determined by computing
ensemble averaged 2-point functions. A typical campaign
consists of taking an ensemble of vacuum gauge
configurations and using them to create intermediate data
products (e.g. quark propagators) and computing meson n-
point functions for every configuration in the ensemble. An
important feature of such a campaign is that the intermediate
calculations done for each configuration are independent of
those done for other configurations.

Fig. 2 shows an analysis campaign for a single
configuration file of an ensemble. The complete workflow
consists of n independent instances of the example in the
figure. The n outputs form the final workflow output, which
is later analyzed. An implicit behavior of analysis campaign
is that the number of participants and outputs depend on the
input parameters. For example the number of participants
generating heavy quark propagators is derived from the
amount of certain physics parameters (e.g. number of
masses).

LQCD calculations are tightly coupled parallel codes,
requiring a high-speed low-latency network interconnection.
Therefore configuration generation and analysis campaigns
require dedicated hardware. Commodity clusters exclusive
for LQCD processing are maintained at national laboratories,
using the PBS batch system in conjunction with the MAUI
scheduler. The application codes (e.g. MILC and Chroma)
are based on the USQCD software suite (available at
http://www.usqcd.org/usqcd-software/).

Figure 1. Configuration generation workflow.

Figure 2. Analysis campaign workflow for one configuration file. Arrows

represent the data flow.

III. REQUIREMENTS
In this section we describe the requirements for a WMS

based on the LQCD workflows and environment. Some
requirements are common for general workflows while
others are specific to LQCD and similar scientific
applications.

1) Workflow templates: ability to describe generic
workflows that can be reuse by changing physics
parameters. The use of templates aims at replacing the
common procedure of copying workflow script files. Items
to consider: description language format, description of
participants (workflow tasks), modeling of dependencies,
resource constraints and parameterization.

2) Workflow instances: a concrete workflow defined by
a template and specific physics parameters. The process of
instantiating a workflow is initiated by scientists and
therefore should have a simple and straightforward
representation. Items to consider: user parameter
verification and validation, workflow instance validation,
unique instance identifier and instance management control
for system administrators.

3) Workflow execution: schedule each workflow task
(participant) based on resolved control and data
dependencies, by mapping it to available resources (or
submitting to PBS). Items to consider: how participants are
identified, mapping to resources, dependency resolution and
participant scheduling.

4) Progress monitoring: ability to monitor the current
status of a workflow instance, allowing quick detection of
problems. Complex LQCD workflows may take several
weeks to complete and need to be monitored closely by
users. Items to consider: track execution, record relevant
states and event notification.

5) Workflow execution history: maintain records for
accounting and prediction for future workflow executions.
Items to consider: execution history and statistics, database
support, collection information from monitoring system and
execution prediction.

6) Execution of multiple workflow instances: system
should support and manage concurrent submission of
workflows executions. Items to consider: management and
optimization of resource utilization.

7) Quality of service features: certain level of quality of
service should be provided: priority of execution based on
application and user; expected workflow execution time;
limitation of running participants (job throttling) based on
the cluster usage. Items to consider: priorities and deadlines,
job throttling.

8) Stage in input data files: the ensemble input files for
analysis campaigns can be pre-fetched prior to the workflow
execution. Items to consider: file pre-fetching and caching.

9) Fault tolerance: provide recovery actions for failed
workflow executions. It is acceptable to have a participant
as minimum level of fault tolerance, no participant

Initial parameters
Configuration Files (ensemble)
Configuration Generation

Configuration File

Heavy quark propagator

Light quark propagator

Heavy-heavy

Heavy-light

Final averages

621

checkpoint is required. Items to consider: participant and
workflow fault tolerance, react to external events.

10) Data provenance: trace files origins, including which
workflow instance and participant generated it with which
physics parameters. Ability to query parameters and
properties of generated files. Items to consider: provenance
schema, support for user queries, provenance details.

11) Campaign execution: the long-term running
workflows are subject to many types of failures during the
execution (e.g. power outage). Items to consider: composite
workflows, ability to interrupt workflows and participants
and persistent workflow state for extending campaigns.

12) Dispatch campaigns: submission of campaigns
(workflow instances) to the system. New campaigns may
extend ongoing workflows by adding new participants and
dependencies. Items to consider: submission of workflow
instances, management of concurrent campaigns and
extension of running campaigns (dynamic workflows).

Although all requirements are desirable on a production
level WMS, the most important items for the LQCD project
in the short term are data provenance, fault tolerance,
progress monitoring, campaign execution and execution
history. Most requirements reflect the need of a thorough and
robust system that can operate in large scale production. The
remaining requirements, such as workflow template and
instances, arise from the need to quickly compose workflows
without burdening users with execution details and allowing
focus to be given to the problem resolution. Another great
concern not stated directly as a requirement is to have a
system capable maximizing aggregate throughput while
addressing user quality of service concerns.

IV. WORKFLOW MANAGEMENT SYSTEMS
Scientific workflow systems have evolved significantly

during the past years, with the development and
improvement of systems and workflow languages. Many
ideas are borrowed from the business workflow area,
although the focus of scientific and business workflows is
distinct. Business workflows aim at controlling the flow of
processing steps that are usually executed through human
interaction, whereas in scientific workflow the importance is
given to the data flow, which is passed through the several
participants (usually stand alone legacy applications).

The area of scientific workflow systems is a very active
research field with several challenging aspects identified [3],
some of which are represented by the requirements described
in section III.

A variety of WMS targeting scientific workflows are
available. Askalon [4], Swift [5], Kepler [6] and Pegasus [7]
are a short list. LQCD workflows were tested in Askalon and
Swift, while Kepler and Pegasus were considered but not
tested.

The typical LQCD workflows were implemented using
Askalon and Swift and checked against the requirements.
The following sub-sections describe our experience using
these two systems on LQCD workflows.

A. Askalon
Askalon is a task coordination and visualization system

developed by the DPS research group at the University of
Innsbruck. In Askalon, the workflows are specified in
Abstract Grid Workflow Language (AGWL) [8], an XML-
based language.

Askalon has its own enactment engine to execute
workflows according to control flow specifications.
Askalon’s client interface is independent of the enactment
engine and the graphical interface can be used to visualize
the progress of executing workflows. Askalon also provides
various performance modeling, prediction, instrumentation,
measurement, and analysis tools. The system provides a
meta-scheduler that distributes the jobs among Grid
resources using the Globus middleware services (GRAM).
Lower-level scheduling is performed by existing Local
Resource Managers (LRMs), such as Condor and PBS.

The following paragraphs describe our findings with
regards to the LQCD requirements.

1) Workflow templates: Askalon defines the Abstract
Grid Workflow Language (AGWL) to describe workflow
models. Resource constraints are currently fixed for the
duration of the workflow execution. Constraints are
described as RSL parameters and allowed on each activity
specification. Input parameters for LQCD workflows are
specified in the initial activity of the workflow, and
provided as an input to other participants by adding data
dependencies from the initial activity. Activities allow
binaries, scripts or remote services to be connected through
input and output ports. Each activity is unique and
registered to the execution engine. Registered activities can
be used by multiple workflows.

2) Workflow instances: parameter checking must be
done at the workflow level, by adding if-then-else
constructs. Instance parameters can be validated at job
submission, but verification is limited to Askalon data types.
Each workflow instance receives a unique identifier. The
management of workflow instantiations not directly
supported, however a database does track the current state
of all instances.

3) Workflow execution: all activities must be registered
before the workflow runs. At run time Askalon invokes the
activities according to command line descriptions defined at
registration time. Activities are scheduled by the enactment
engine through submitting activity jobs through GRAM to
the local scheduler after all of the control dependencies of
that participant are met.

4) Progress monitoring: the Askalon graphical user
interface highlights the activities according to their status,
besides displaying a console log. States are also recorded on
a Postgres database. There are facilities to register callbacks
on predefined events.

5) Workflow execution history: complete execution
history tracked by database, providing queue times and wait
times. Information from external events can be added to

622

database. Askalon has support for predicting execution
times based on historical data.

6) Execution of multiple workflow instances: the system
architecture allows for concurrent workflow management.
Independent graphical interfaces are used for submitting and
monitoring the execution of workflow instances. Execution
is carried out by the execution engine. Optimization of
resources can be implemented as the system provides entry
points.

7) Quality of service features: workflow and activity
priorities can be added by replacing queues with priority
queues throughout the Askalon components. Limited
support for job throttling is possible by change internal
queue sizes.

8) Stage in input data files: no file pre-fetching is
available. The workflow must perform any file pre-fetching
and caching.

9) Fault tolerance: failed participants are submitted to
alternative sites, which is not an option for LQCD
workflows. External events from monitoring systems can be
added. Currently there is no support for workflow level fault
tolerance.

10) Data provenance: the only provenance information
provided originates from the monitoring database. It
however does not track provenance of data products.

11) Campaign execution: composite activities may
include sub-workflows, each one processing an ensemble
file. Ability to pause participants is present, but not
functional at testing time. The extension of campaigns is
currently not possible. There is no tracking of data products
required for extending campaigns.

12) Dispatch campaigns: workflow instances can be
dispatched to the Askalon system through the provided java
web start client interface. Multiple campaigns can be
dispatched using different client interface instances. There is
no support for controlling groups of workflow. Extension of
running campaigns is not possible on the tested version, but
support for dynamic workflows is planned for future
releases.

Overall the Askalon architecture is flexible and
extensible, providing means to add new features according to
application requirements. Workflows are intuitive and easy
to model through the graphical interface. The monitoring
database and visualization interface are great tools for
understanding workflow performance and identify
bottlenecks. On the other hand the installation process is not
trivial on the server side and the graphical interface performs
poorly over the network. At this time the system has not
been used in actual large scale production.

B. Swift
The Swift Workflow system is an evolution of VDS

system [9] being developed at the Computation Institute at
the University of Chicago. Workflows are described in the
SwiftScript language and executed using the Karajan engine.

Karajan uses the Globus toolkit for job scheduling, execution
and monitoring.

The following paragraphs describe our findings with
regards to the LQCD requirements.

1) Workflow templates: a workflow is described in
SwiftScript, which is based on VDL [9]. A graphical editor
is not available as in Askalon. Participants are modeled as
SwiftScript procedures. Data dependencies between
participants are defined by shared input and output
parameters to the procedures. The data dependency
parameters are file names that must match exactly the names
in the file system. Dependencies are resolved based on
existence of files. Extensible mappers provide mechanisms
to translate file names to actual disk locations. Resource
constraints are fixed for duration of the workflow execution,
also based on the parameters in RSL specification.

2) Workflow instances: type checking is performed by
SwiftScript language. The validity of parameter range must
be added by users. Swift provides a command line option (-
dryrun) that verifies whether a workflow instance is valid
with respect to the language and data types. This option
does not guarantee that the workflow will run error free. A
unique name and identifier is generated at run time.

3) Workflow execution: at run time the SwiftScript is
translated into a Karajan workflow description. The
underlying local scheduler is polled for completed tasks.
New jobs are launched when dependencies are ready.
Participants can only be statically mapped to specific
resources via configuration files through unique participant
names. Tasks are ready to run as soon as data dependencies
are met.

4) Progress monitoring: participant status and errors are
logged on a file or standard output for each workflow
instance. Event notification is not supported.

5) Workflow execution history: the execution history for
each workflow is tracked on unique log files. No database
support is provided.

6) Execution of multiple workflow instances: instances
of Swift run workflows independently. Management of
concurrent workflows and resource utilization are
responsibilities of the execution sites.

7) Quality of service features: no quality of service
features are provided by Swift. These must be managed at
the local scheduler level if possible.

8) Stage in input data files: Swift also does not have any
file pre-fetching support. It does however verify whether
files are already cached in the system before requesting
copies or recreating the files.

9) Fault tolerance: execution of failed participants is
retried n times, according to system wide setting. A failed
workflow can be resumed by invoking Swift specifying the
log file used to track workflow progress. There is no support
for reacting to external events.

623

10) Data provenance: limited support for provenance is
provided, although its VDS predecessor has this capability
implemented through the virtual data catalog (VDC).
Provenance information can be extracted from execution log
files produced by Swift and deduced from the SwiftScript
itself.

11) Campaign execution: an analysis campaign is
described as a SwiftScript; sub-workflows must be
contained as functions within the script. Alternatively
participants can start independent Swift workflows
representing parts of a campaign. There is no support for
stopping or pausing participants. Workflow execution state
is kept in the log file, allowing restart from a failure. There
is no support for extending campaigns.

12) Dispatch campaigns: there is no concept of
dispatching a workflow instance to Swift. Workflow
instances are executed by directly invoking Swift. Each
concurrent workflow instance requires its own instance of
Swift and Karajan. Control is individual to each workflow
instance. Extension of running campaigns is not possible.

The Swift system is very easy to install and maintain.
The precursor system (VDS) has been successfully used on
production. Workflow execution in Karajan is lightweight,
but Swift is tightly bound to it. The purely data flow
procedural syntax is non-intuitive for scientists to learn and
program.

V. DISCUSSION
Sample configuration generation and analysis campaign

workflows were modeled and tested using both systems.
Table I summarizes the functionality of the systems taking in
considerations the most relevant requirements described in
section III.

TABLE I. SUMMARY OF LQCD REQUIREMENTS AND AVAILABLE
WMS FUNCTIONALITY

Requirement Askalon Swift
Data
provenance

Provenance on
execution only

Dependency graph

Participant
fault tolerance

Retries on different sites Retries n times

Workflow
fault tolerance

None Resume from failed
participant

Progress
monitoring

Workflow instance and
participant tracking

Status reported to log
file

Campaign
execution

Available. No campaign
extension

Limited support

Execution
history

Postgres database Log files

Among the most relevant requirements the data

provenance and fault tolerance for participants and
workflows have the highest priority. Data provenance allows
scientists to be certain of products origin while fault
tolerance contributes for a higher utilization of the dedicated
clusters. The experience with workflow composition and
execution are described in the following sections.

Figure 3. Loop condition expressed as a file dependency in Swift.

A. Workflow Composition
The configuration generation workflow, with no

ensemble forking, is quite simple to be modeled. It requires a
regular loop construct whose exit condition is based on a
simple comparison (e.g. self-consistency check value[i-1] –
value[i] < error). Both systems require the creation of
additional files to perform the loop condition check, which
conforms to their focus on Grid workflows.

In Askalon the process is partially transparent for the
scientist composing the workflow through the graphical
interface because the mapping to files is performed by the
participant implementation. Participants are created and
registered before the workflow composition.

On the other hand, the scientist composing the same
workflow in Swift must be aware of these extra control files,
which contain an integer variable to be tested as the
consistency check (e.g. condition is set to 1 the loop is
terminated in Fig. 3). This additional requirement illustrates
how a workflow definition may be cumbersome to translate
into an implementation.

Considering the analysis campaigns, both systems have
issues with implementation. In Askalon, control and data
dependencies must be modeled. Parallel for loops based on
control flow are used to produce the intermediate files based
on physics input parameters (e.g. heavy quark propagators).
The Askalon implementation of the analysis campaign
workflow in Fig. 2 is shown in Fig. 4. The potential
parallelism between LQ and HQ is hard to model effectively
in Askalon. As a result potential parallelism is lost.

Figure 4. Modified Analysis campaign workflow in Askalon.

Figure 5. Usage of the customized tag_array_mapper. Parameters in file

name format are surrounded by the ‘%’ character.

file condition[]<simple_mapper;prefix="cond-",suffix="dat">;
…
iterate i {
 (config[i+1], condition[i+1]) = Tune(config[i])
} until (@extractint(condition[i+1]) > 0);

file hq_propagator[]<tag_array_mapper;
 properties="input_parameters_file",
 format="/hq_%wsrc%_%kappaQ%_%gauge%")>;
file lq_propagator[]<tag_array_mapper;
 properties="input_parameters_file",
 format="/lq_%wsrc%_m%mass%_nt%tsrc%_%gauge%>;

624

Figure 6. Association between input files for HeavyLight participant.

In Swift all input and output files generated through the
analysis campaign workflow must be explicitly referenced
via file names. Collections of files, such as heavy quark
propagators, are modeled as an array in Swift. In our
implementation, the arrays are constructed via a customized
tag_array_mapper, which generates the file names based on
combinations of workflow input parameters (usage is shown
in Fig. 5). The mapping requires users to define all product
file names at composition time and construct functions to
relate files from various arrays. For example, the generation
of a heavy light file requires a light quark propagator file and
three heavy quark propagators files according to Fig. 2. For a
light quark propagator using ensemble gauge index i the
heavy quark propagators for the same gauge i are needed.
However the indices in the array are not contiguous as
shown in the sample code in Fig. 6, where heavy quark
propagator indices are accessed in a stride pattern.

The composition of configuration generation and analysis
campaign workflows in the Askalon graphical model and in
the SwiftScript language took several iterations and help of
developers. The main reasons were the language learning
process and modifications on the workflow structure to fit
the constructs and restrictions of each system.

B. Workflow Execution
We first successfully installed both systems in our local

cluster and configuring them to use the local PBS batch
system. The installation of Askalon required more interaction
with developer for a proper installation while Swift only
needed an extra module to provide access to PBS.

Askalon and Swift ran satisfactorily the workflows and
produced expected outputs, although many required features
are not available or have limited support as per table I.

VI. CONCLUSIONS AND FUTURE WORK
There is no single system solution for all types of

scientific workflows. This paper is an example of how
workflow requirements are very dependent on the problem.
However it is one of the goals of this project to produce
solutions and/or extend existing systems that can be used on
similar applications.

Askalon has a well designed and modularized
architecture that matches well the LQCD environment and
requirements, while Swift is a lightweight system based on a
successful data provenance system (VDS/VDC). Both are
promising systems, but there are still several issues to pursue
before reaching the production level necessary for managing
LQCD workflows, especially on critical areas of data
provenance and fault tolerance. Developers are working to
improve these systems.

The exercise of gathering the requirements helped the
LQCD workflow group to bring together computer science
and physics aspects of the problem. Understanding well the
problem to be solved is the first step on the successful

implementation of a scientific workflow. The prototyping of
LQCD workflows in different systems allowed us to
understand the current issues with WMS and how we can
contribute with developers.

Data provenance and fault tolerance are extremely
important for LQCD. These are areas in conjunction with
campaign execution (workflow cluster scheduling) in which
the group is currently working. The Pegasus and Kepler
systems are also planned to be evaluated in a similar fashion
against the LQCD requirements.

ACKNOWLEDGMENT
This work was supported in part by Fermi National

Accelerator Laboratory, operated by Fermi Research
Alliance, LLC under contract No. DE-AC02-07CH11359
with the United States Department of Energy (DoE), and by
DoE SciDAC program under the contract No. DOE DE-
FC02-06 ER41442. The authors would like to thank the
Askalon developers Kassian Plankensteiner and Simon
Ostermann, and the Swift developers Mihael Hategan, Yong
Zhao and Mike Wilde.

REFERENCES
[1] N. Podhorszki, B. Ludaescher and S. A. Klasky. “Workflow

automation for processing plasma fusion simulation data”, in
Proceedings of the 2nd workshop on Workflows in support of large-
scale science, Monterrey, CA. 2007, pp. 35–44.

[2] E. Deelman, et. al. “Managing large-scale workflow execution from
resource provisioning to provenance tracking: the CyberShake
example”. In Proceedings of the Second IEEE International
Conference on E-Science and Grid Computing (December 04–06,
2006), doi:10.1109/E-SCIENCE.2006.99.

[3] Gil, Y. et al. “Examining the challenges of scientific workflows”.
Computer, Volume 40, no. 12, Dec. 2007, pp. 24–32.

[4] T. Fahringer, et al. “ASKALON: a grid application development and
computing environment”. In Proceedings of the 6th IEEE/ACM
international Workshop on Grid Computing (November 13–14,
2005). International Conference on Grid Computing, pp. 122–131
doi:10.1109/GRID.2005.1542733.

[5] Y. Zhao, et al. “Swift: fast, reliable, loosely coupled parallel
computation”. In IEEE International Workshop on Scientific
Workflows 2007, pp. 199–206.

[6] Altintas, I. “Kepler: an extensible system for design and execution of
scientific workflows”. In the 16th Intl. Conference on Scientific and
Statistical Database Management (SSDBM), Santorini Island, Greece,
June 2004.

[7] Deelman, E. “Pegasus: a Framework for Mapping Complex Scientific
Workflows onto Distributed Systems”. Scientific Programming
Journal, Vol. 13(3), 2005, Pages 219–237.

[8] T. Fahringer, S. Pllana, and A. Villazon. “AGWL: abstract grid
workflow language”. In International Conference on Computational
Science, Programming Paradigms for Grids and Metacomputing
Systems, Krakow, Poland, June 2004.

[9] I. Foster, J. Voeckler, M. Wilde and Y. Zhao. “Chimera: a virtual data
system for representing, querying, and automating data derivation”.
14th International Conference on Scientific and Statistical Database
Management (SSDBM'02).

heavy_lightfile[i] = HL(lq_propagator[i], hq_propagator[i],
 hq_propagator[i+4], hq_propagator[i+8]);

625

