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Abstract—This paper discusses the application of existing 
workflow management systems to a real world science 
application (LQCD). Typical workflows and execution 
environment used in production are described. Requirements 
for the LQCD production system are discussed. The workflow 
management systems Askalon and Swift were tested by 
implementing the LQCD workflows and evaluated against the 
requirements. We report our findings and future work. 
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I.  INTRODUCTION 
Quantum ChromoDynamics (QCD) is the theory of the 

strong force that describes the binding of quarks by gluons to 
make particles such as neutrons and protons. Lattice 
Quantum ChromoDynamics (LQCD) is the numerical 
simulation of QCD. Its calculations allow us to understand 
the results of particle and nuclear physics experiments in 
terms of QCD.  LQCD is both computation and data 
intensive, and it is representative of large scale scientific 
computing. 

The typical routine of a scientist running a series of 
LQCD computations can be roughly described by the 
following steps: copy previous workflow script; change 
parameters in the file (e.g. quark masses); run the modified 
script; check periodically whether jobs are running; in case 
of an error look for the cause in the several produced log 
files; fix problem and repeat until all the processing 
succeeds. 

As new problems are detected the script is modified to 
perform additional checking and run recovering procedures. 
This cycle repeats until achieving a stable version, which is 
later constantly copied and modified with new application 
parameters. Despite the ability to produce science, this 
methodology lacks fundamental aspects that allow scientists 
to devote most of their time to make science instead of 
constantly fixing and monitoring workflow scripts. 

Groups of scientist within the LQCD collaboration use 
different tools and methods to coordinate the workflows. 
Perl, Python or shell scripts are used for invoking the 
sequence of MPI-based applications; input parameters are 
kept within the scripts or even hardcoded in the applications 
themselves; and generated files are stored in a shared area 
and saved to tape as needed. 

Workflow Management Systems (WMS) promote 
productivity and standardization on this type of environment. 
WMS are successfully used for scientific applications, such 
as plasma fusion simulations [1] and earthquake analysis and 
simulations [2] among others. Our goal is to evaluate 
existing systems for use in production scale of LQCD 
experiments. 

In this paper we present the LQCD experience with 
WMS. After an analysis of typical LQCD workflows and 
environment (section II) we conduct a description of 
requirements for a WMS (section III). A couple of WMS 
were tested with LQCD workflows and our findings 
regarding the requirements are reported on section IV. In 
section V we discuss the workflow composition and 
execution. Conclusions and future work are presented on 
section VI. 

II. LATTICE QCD WORKFLOWS 
LQCD computations are typically divided into two 

workflows: configuration generation and analysis 
campaigns. The former generates collections of files 
(ensembles) which are used as inputs to the latter. Both 
workflows require coordination of physics parameters, 
cluster parameters, binaries, input and output files. They 
have distinct flow characteristics as described in the 
following paragraphs. 

The configuration generation workflow (see Fig. 1) is 
responsible for creating ensembles. An ensemble is an 
ordered collection of gluon configurations sharing the same 
physics parameters e.g. lattice spacing (or QCD coupling 
strength), number of sea quarks and sea quark masses. 
Configurations are generated in a Markov sequence. 

At each step, the last configuration serves as the starting 
gluon configuration which is evolved forward in simulation 
time by Monte Carlo techniques. At regular intervals in 
Monte Carlo simulation time, gluon configuration snapshots 
are saved. An ensemble may contain a fork where more than 
one Monte Carlo evolution sequence was started from the 
same input configuration. 

The configuration generation process has two phases: 
tuning and production. The workflows have a small 
distinction. The tuning process finishes when self 
consistency of input parameters and output values is reached, 
while the production phase repeats for a number of pre-
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defined user input steps. In addition to the ensemble, 
metadata are generated within log and standard output files. 
Processing of configuration generation accounts for 
approximately 40% of the total time dedicated for LQCD. 

The analysis campaign workflows are a coordinated set 
of calculations aimed at determining a set of specific physics 
quantities. For example, predicting the mass and decay 
constant of a specific particle determined by computing 
ensemble averaged 2-point functions. A typical campaign 
consists of taking an ensemble of vacuum gauge 
configurations and using them to create intermediate data 
products (e.g. quark propagators) and computing meson n-
point functions for every configuration in the ensemble. An 
important feature of such a campaign is that the intermediate 
calculations done for each configuration are independent of 
those done for other configurations. 

Fig. 2 shows an analysis campaign for a single 
configuration file of an ensemble. The complete workflow 
consists of n independent instances of the example in the 
figure. The n outputs form the final workflow output, which 
is later analyzed. An implicit behavior of analysis campaign 
is that the number of participants and outputs depend on the 
input parameters. For example the number of participants 
generating heavy quark propagators is derived from the 
amount of certain physics parameters (e.g. number of 
masses). 

LQCD calculations are tightly coupled parallel codes, 
requiring a high-speed low-latency network interconnection. 
Therefore configuration generation and analysis campaigns 
require dedicated hardware. Commodity clusters exclusive 
for LQCD processing are maintained at national laboratories, 
using the PBS batch system in conjunction with the MAUI 
scheduler. The application codes (e.g. MILC and Chroma) 
are based on the USQCD software suite (available at 
http://www.usqcd.org/usqcd-software/).  

 
Figure 1.  Configuration generation workflow. 

 
Figure 2.  Analysis campaign workflow for one configuration file. Arrows 

represent the data flow. 

III. REQUIREMENTS 
In this section we describe the requirements for a WMS 

based on the LQCD workflows and environment. Some 
requirements are common for general workflows while 
others are specific to LQCD and similar scientific 
applications. 

1) Workflow templates: ability to describe generic 
workflows that can be reuse by changing physics 
parameters. The use of templates aims at replacing the 
common procedure of copying workflow script files. Items 
to consider: description language format, description of 
participants (workflow tasks), modeling of dependencies, 
resource constraints and parameterization. 

2) Workflow instances: a concrete workflow defined by 
a template and specific physics parameters. The process of 
instantiating a workflow is initiated by scientists and 
therefore should have a simple and straightforward 
representation. Items to consider: user parameter 
verification and validation, workflow instance validation, 
unique instance identifier and instance management control 
for system administrators. 

3) Workflow execution: schedule each workflow task 
(participant) based on resolved control and data 
dependencies, by mapping it to available resources (or 
submitting to PBS). Items to consider: how participants are 
identified, mapping to resources, dependency resolution and 
participant scheduling. 

4) Progress monitoring: ability to monitor the current 
status of a workflow instance, allowing quick detection of 
problems. Complex LQCD workflows may take several 
weeks to complete and need to be monitored closely by 
users. Items to consider: track execution, record relevant 
states and event notification. 

5) Workflow execution history: maintain records for 
accounting and prediction for future workflow executions. 
Items to consider: execution history and statistics, database 
support, collection information from monitoring system and 
execution prediction. 

6) Execution of multiple workflow instances: system 
should support and manage concurrent submission of 
workflows executions. Items to consider: management and 
optimization of resource utilization. 

7) Quality of service features: certain level of quality of 
service should be provided: priority of execution based on 
application and user; expected workflow execution time; 
limitation of running participants (job throttling) based on 
the cluster usage. Items to consider: priorities and deadlines, 
job throttling. 

8) Stage in input data files: the ensemble input files for 
analysis campaigns can be pre-fetched prior to the workflow 
execution. Items to consider: file pre-fetching and caching. 

9) Fault tolerance: provide recovery actions for failed 
workflow executions. It is acceptable to have a participant 
as minimum level of fault tolerance, no participant 
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checkpoint is required. Items to consider: participant and 
workflow fault tolerance, react to external events. 

10) Data provenance: trace files origins, including which 
workflow instance and participant generated it with which 
physics parameters. Ability to query parameters and 
properties of generated files. Items to consider: provenance 
schema, support for user queries, provenance details. 

11) Campaign execution: the long-term running 
workflows are subject to many types of failures during the 
execution (e.g. power outage). Items to consider: composite 
workflows, ability to interrupt workflows and participants 
and persistent workflow state for extending campaigns. 

12) Dispatch campaigns: submission of campaigns 
(workflow instances) to the system. New campaigns may 
extend ongoing workflows by adding new participants and 
dependencies. Items to consider: submission of workflow 
instances, management of concurrent campaigns and 
extension of running campaigns (dynamic workflows). 

Although all requirements are desirable on a production 
level WMS, the most important items for the LQCD project 
in the short term are data provenance, fault tolerance, 
progress monitoring, campaign execution and execution 
history. Most requirements reflect the need of a thorough and 
robust system that can operate in large scale production. The 
remaining requirements, such as workflow template and 
instances, arise from the need to quickly compose workflows 
without burdening users with execution details and allowing 
focus to be given to the problem resolution. Another great 
concern not stated directly as a requirement is to have a 
system capable maximizing aggregate throughput while 
addressing user quality of service concerns. 

IV. WORKFLOW MANAGEMENT SYSTEMS 
Scientific workflow systems have evolved significantly 

during the past years, with the development and 
improvement of systems and workflow languages. Many 
ideas are borrowed from the business workflow area, 
although the focus of scientific and business workflows is 
distinct. Business workflows aim at controlling the flow of 
processing steps that are usually executed through human 
interaction, whereas in scientific workflow the importance is 
given to the data flow, which is passed through the several 
participants (usually stand alone legacy applications). 

The area of scientific workflow systems is a very active 
research field with several challenging aspects identified [3], 
some of which are represented by the requirements described 
in section III. 

A variety of WMS targeting scientific workflows are 
available. Askalon [4], Swift [5], Kepler [6] and Pegasus [7] 
are a short list. LQCD workflows were tested in Askalon and 
Swift, while Kepler and Pegasus were considered but not 
tested. 

The typical LQCD workflows were implemented using 
Askalon and Swift and checked against the requirements. 
The following sub-sections describe our experience using 
these two systems on LQCD workflows. 

A. Askalon 
Askalon is a task coordination and visualization system 

developed by the DPS research group at the University of 
Innsbruck. In Askalon, the workflows are specified in 
Abstract Grid Workflow Language (AGWL) [8], an XML-
based language. 

Askalon has its own enactment engine to execute 
workflows according to control flow specifications. 
Askalon’s client interface is independent of the enactment 
engine and the graphical interface can be used to visualize 
the progress of executing workflows. Askalon also provides 
various performance modeling, prediction, instrumentation, 
measurement, and analysis tools. The system provides a 
meta-scheduler that distributes the jobs among Grid 
resources using the Globus middleware services (GRAM). 
Lower-level scheduling is performed by existing Local 
Resource Managers (LRMs), such as Condor and PBS. 

The following paragraphs describe our findings with 
regards to the LQCD requirements. 

1) Workflow templates: Askalon defines the Abstract 
Grid Workflow Language (AGWL) to describe workflow 
models. Resource constraints are currently fixed for the 
duration of the workflow execution. Constraints are 
described as RSL parameters and allowed on each activity 
specification. Input parameters for LQCD workflows are 
specified in the initial activity of the workflow, and 
provided as an input to other participants by adding data 
dependencies from the initial activity. Activities allow 
binaries, scripts or remote services to be connected through 
input and output ports. Each activity is unique and 
registered to the execution engine. Registered activities can 
be used by multiple workflows. 

2) Workflow instances: parameter checking must be 
done at the workflow level, by adding if-then-else 
constructs. Instance parameters can be validated at job 
submission, but verification is limited to Askalon data types. 
Each workflow instance receives a unique identifier. The 
management of workflow instantiations not directly 
supported, however a database does track the current state 
of all instances. 

3) Workflow execution: all activities must be registered 
before the workflow runs. At run time Askalon invokes the 
activities according to command line descriptions defined at 
registration time. Activities are scheduled by the enactment 
engine through submitting activity jobs through GRAM to 
the local scheduler after all of the control dependencies of 
that participant are met.  

4) Progress monitoring: the Askalon graphical user 
interface highlights the activities according to their status, 
besides displaying a console log. States are also recorded on 
a Postgres database. There are facilities to register callbacks 
on predefined events. 

5) Workflow execution history: complete execution 
history tracked by database, providing queue times and wait 
times. Information from external events can be added to 
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database. Askalon has support for predicting execution 
times based on historical data. 

6) Execution of multiple workflow instances: the system 
architecture allows for concurrent workflow management. 
Independent graphical interfaces are used for submitting and 
monitoring the execution of workflow instances. Execution 
is carried out by the execution engine. Optimization of 
resources can be implemented as the system provides entry 
points. 

7) Quality of service features: workflow and activity 
priorities can be added by replacing queues with priority 
queues throughout the Askalon components. Limited 
support for job throttling is possible by change internal 
queue sizes. 

8) Stage in input data files: no file pre-fetching is 
available. The workflow must perform any file pre-fetching 
and caching. 

9) Fault tolerance: failed participants are submitted to 
alternative sites, which is not an option for LQCD 
workflows. External events from monitoring systems can be 
added. Currently there is no support for workflow level fault 
tolerance. 

10) Data provenance: the only provenance information 
provided originates from the monitoring database. It 
however does not track provenance of data products. 

11) Campaign execution: composite activities may 
include sub-workflows, each one processing an ensemble 
file. Ability to pause participants is present, but not 
functional at testing time. The extension of campaigns is 
currently not possible. There is no tracking of data products 
required for extending campaigns. 

12) Dispatch campaigns: workflow instances can be 
dispatched to the Askalon system through the provided java 
web start client interface. Multiple campaigns can be 
dispatched using different client interface instances. There is 
no support for controlling groups of workflow. Extension of 
running campaigns is not possible on the tested version, but 
support for dynamic workflows is planned for future 
releases. 

Overall the Askalon architecture is flexible and 
extensible, providing means to add new features according to 
application requirements. Workflows are intuitive and easy 
to model through the graphical interface. The monitoring 
database and visualization interface are great tools for 
understanding workflow performance and identify 
bottlenecks. On the other hand the installation process is not 
trivial on the server side and the graphical interface performs 
poorly over the network. At this time the system has not 
been used in actual large scale production. 

B. Swift 
The Swift Workflow system is an evolution of VDS 

system [9] being developed at the Computation Institute at 
the University of Chicago. Workflows are described in the 
SwiftScript language and executed using the Karajan engine. 

Karajan uses the Globus toolkit for job scheduling, execution 
and monitoring. 

The following paragraphs describe our findings with 
regards to the LQCD requirements. 

1) Workflow templates: a workflow is described in 
SwiftScript, which is based on VDL [9]. A graphical editor 
is not available as in Askalon. Participants are modeled as 
SwiftScript procedures.  Data dependencies between 
participants are defined by shared input and output 
parameters to the procedures. The data dependency 
parameters are file names that must match exactly the names 
in the file system. Dependencies are resolved based on 
existence of files. Extensible mappers provide mechanisms 
to translate file names to actual disk locations. Resource 
constraints are fixed for duration of the workflow execution, 
also based on the parameters in RSL specification. 

2) Workflow instances: type checking is performed by 
SwiftScript language. The validity of parameter range must 
be added by users. Swift provides a command line option (-
dryrun) that verifies whether a workflow instance is valid 
with respect to the language and data types. This option 
does not guarantee that the workflow will run error free. A 
unique name and identifier is generated at run time. 

3) Workflow execution: at run time the SwiftScript is 
translated into a Karajan workflow description.  The 
underlying local scheduler is polled for completed tasks. 
New jobs are launched when dependencies are ready. 
Participants can only be statically mapped to specific 
resources via configuration files through unique participant 
names. Tasks are ready to run as soon as data dependencies 
are met. 

4) Progress monitoring: participant status and errors are 
logged on a file or standard output for each workflow 
instance. Event notification is not supported. 

5) Workflow execution history: the execution history for 
each workflow is tracked on unique log files. No database 
support is provided. 

6) Execution of multiple workflow instances: instances 
of Swift run workflows independently. Management of 
concurrent workflows and resource utilization are 
responsibilities of the execution sites. 

7) Quality of service features: no quality of service 
features are provided by Swift. These must be managed at 
the local scheduler level if possible. 

8) Stage in input data files: Swift also does not have any 
file pre-fetching support. It does however verify whether 
files are already cached in the system before requesting 
copies or recreating the files. 

9) Fault tolerance: execution of failed participants is 
retried n times, according to system wide setting. A failed 
workflow can be resumed by invoking Swift specifying the 
log file used to track workflow progress. There is no support 
for reacting to external events. 
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10) Data provenance: limited support for provenance is 
provided, although its VDS predecessor has this capability 
implemented through the virtual data catalog (VDC). 
Provenance information can be extracted from execution log 
files produced by Swift and deduced from the SwiftScript 
itself. 

11) Campaign execution: an analysis campaign is 
described as a SwiftScript; sub-workflows must be 
contained as functions within the script. Alternatively 
participants can start independent Swift workflows 
representing parts of a campaign. There is no support for 
stopping or pausing participants. Workflow execution state 
is kept in the log file, allowing restart from a failure. There 
is no support for extending campaigns. 

12) Dispatch campaigns: there is no concept of 
dispatching a workflow instance to Swift. Workflow 
instances are executed by directly invoking Swift. Each 
concurrent workflow instance requires its own instance of 
Swift and Karajan. Control is individual to each workflow 
instance. Extension of running campaigns is not possible. 

The Swift system is very easy to install and maintain. 
The precursor system (VDS) has been successfully used on 
production. Workflow execution in Karajan is lightweight, 
but Swift is tightly bound to it. The purely data flow 
procedural syntax is non-intuitive for scientists to learn and 
program. 

V. DISCUSSION 
Sample configuration generation and analysis campaign 

workflows were modeled and tested using both systems. 
Table I summarizes the functionality of the systems taking in 
considerations the most relevant requirements described in 
section III.  

TABLE I.  SUMMARY OF LQCD REQUIREMENTS AND AVAILABLE 
WMS FUNCTIONALITY 

Requirement Askalon Swift 
Data 
provenance 

Provenance on 
execution only 

Dependency graph  

Participant  
fault tolerance 

Retries on different sites Retries n times 

Workflow 
fault tolerance 

None Resume from failed 
participant 

Progress 
monitoring 

Workflow instance and 
participant tracking 

Status reported to log 
file 

Campaign 
execution 

Available. No campaign 
extension 

Limited support 

Execution 
history 

Postgres database Log files 

 
Among the most relevant requirements the data 

provenance and fault tolerance for participants and 
workflows have the highest priority. Data provenance allows 
scientists to be certain of products origin while fault 
tolerance contributes for a higher utilization of the dedicated 
clusters. The experience with workflow composition and 
execution are described in the following sections. 

 
Figure 3.  Loop condition expressed as a file dependency in Swift. 

A. Workflow Composition 
The configuration generation workflow, with no 

ensemble forking, is quite simple to be modeled. It requires a 
regular loop construct whose exit condition is based on a 
simple comparison (e.g. self-consistency check value[i-1] – 
value[i] < error). Both systems require the creation of 
additional files to perform the loop condition check, which 
conforms to their focus on Grid workflows. 

In Askalon the process is partially transparent for the 
scientist composing the workflow through the graphical 
interface because the mapping to files is performed by the 
participant implementation. Participants are created and 
registered before the workflow composition. 

On the other hand, the scientist composing the same 
workflow in Swift must be aware of these extra control files, 
which contain an integer variable to be tested as the 
consistency check (e.g. condition is set to 1 the loop is 
terminated in Fig. 3). This additional requirement illustrates 
how a workflow definition may be cumbersome to translate 
into an implementation. 

Considering the analysis campaigns, both systems have 
issues with implementation. In Askalon, control and data 
dependencies must be modeled. Parallel for loops based on 
control flow are used to produce the intermediate files based 
on physics input parameters (e.g. heavy quark propagators). 
The Askalon implementation of the analysis campaign 
workflow in Fig. 2 is shown in Fig. 4. The potential 
parallelism between LQ and HQ is hard to model effectively 
in Askalon. As a result potential parallelism is lost. 

 

 
Figure 4.  Modified Analysis campaign workflow in Askalon. 

 
Figure 5.  Usage of the customized tag_array_mapper. Parameters in file 

name format are surrounded by the ‘%’ character. 

file condition[]<simple_mapper;prefix="cond-",suffix="dat">; 
… 
iterate i { 
  (config[i+1], condition[i+1]) = Tune(config[i]) 
} until (@extractint(condition[i+1]) > 0); 

file hq_propagator[]<tag_array_mapper; 
                  properties="input_parameters_file", 
                  format="/hq_%wsrc%_%kappaQ%_%gauge%")>; 
file lq_propagator[]<tag_array_mapper; 
                 properties="input_parameters_file", 
                 format="/lq_%wsrc%_m%mass%_nt%tsrc%_%gauge%>; 
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Figure 6.  Association between input files for HeavyLight participant. 

In Swift all input and output files generated through the 
analysis campaign workflow must be explicitly referenced 
via file names. Collections of files, such as heavy quark 
propagators, are modeled as an array in Swift. In our 
implementation, the arrays are constructed via a customized 
tag_array_mapper, which generates the file names based on 
combinations of workflow input parameters (usage is shown 
in Fig. 5). The mapping requires users to define all product 
file names at composition time and construct functions to 
relate files from various arrays. For example, the generation 
of a heavy light file requires a light quark propagator file and 
three heavy quark propagators files according to Fig. 2. For a 
light quark propagator using ensemble gauge index i the 
heavy quark propagators for the same gauge i are needed. 
However the indices in the array are not contiguous as 
shown in the sample code in Fig. 6, where heavy quark 
propagator indices are accessed in a stride pattern. 

The composition of configuration generation and analysis 
campaign workflows in the Askalon graphical model and in 
the SwiftScript language took several iterations and help of 
developers. The main reasons were the language learning 
process and modifications on the workflow structure to fit 
the constructs and restrictions of each system. 

B. Workflow Execution 
We first successfully installed both systems in our local 

cluster and configuring them to use the local PBS batch 
system. The installation of Askalon required more interaction 
with developer for a proper installation while Swift only 
needed an extra module to provide access to PBS. 

Askalon and Swift ran satisfactorily the workflows and 
produced expected outputs, although many required features 
are not available or have limited support as per table I. 

VI. CONCLUSIONS AND FUTURE WORK 
There is no single system solution for all types of 

scientific workflows. This paper is an example of how 
workflow requirements are very dependent on the problem. 
However it is one of the goals of this project to produce 
solutions and/or extend existing systems that can be used on 
similar applications. 

Askalon has a well designed and modularized 
architecture that matches well the LQCD environment and 
requirements, while Swift is a lightweight system based on a 
successful data provenance system (VDS/VDC). Both are 
promising systems, but there are still several issues to pursue 
before reaching the production level necessary for managing 
LQCD workflows, especially on critical areas of data 
provenance and fault tolerance. Developers are working to 
improve these systems. 

The exercise of gathering the requirements helped the 
LQCD workflow group to bring together computer science 
and physics aspects of the problem. Understanding well the 
problem to be solved is the first step on the successful 

implementation of a scientific workflow. The prototyping of 
LQCD workflows in different systems allowed us to 
understand the current issues with WMS and how we can 
contribute with developers. 

Data provenance and fault tolerance are extremely 
important for LQCD. These are areas in conjunction with 
campaign execution (workflow cluster scheduling) in which 
the group is currently working. The Pegasus and Kepler 
systems are also planned to be evaluated in a similar fashion 
against the LQCD requirements. 
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