Workflow Evaluation

Workflow Evaluation
LQCD Workflow Project Team

1 Introduction

1.1 Purpose

The LQCD workflow project team has over the last year evaluated a number of existing scientific workflow systems and investigated their ability to fulfill various LQCD workflow project requirements. The goal of this evaluation is to provide a comparison and critique of various workflow systems and thus determine which workflow system can be best adapted to meet the LQCD project needs. This report is a summary of this investigation.

A list of candidate systems was compiled, from which Askalon and Swift were selected for further evaluation. The selected systems were evaluated by using several workflow use cases for comparison. 

As a part of this report, we outline the changes that would be needed in each workflow system to make them suitable for use by LQCD.
1.2 Executive Summary
Current LQCD production involves the execution and coordination of hundreds of independent PBS batch jobs. Domain scientists are currently using a makefile-like script system to track dependencies between jobs. The status of execution is reported through the individual log files, thus requiring scientists to search through several hundreds of log files to extract information regarding their campaigns.

Domain scientists need a framework that facilitates efficient job creation, job submission, status monitoring, and result retrieval. The adoption of any new workflow framework will require the domain scientists to learn the new workflow language (graphical or textual) and code their campaigns and workflow in that new language. The adoption of the workflow language will allow the LQCD campaigns to be described in more concise and abstract forms, thus removing the lower level control provided by the current script based systems. However, in reality these lower level controls are mostly used by the domain scientist for tasks that will be performed by a workflow management system, such as keeping track of data products.

None of the currently available workflow systems can be quickly adapted for production use by LQCD, as several key requirements of the LQCD projects are not addressed by any of those systems. Additional development of specialized modules needs to be performed in-house to adopt these generic workflow systems for production use by the LQCD project.

The advantage of using a currently available workflow system is that we could skip the initial and costly framework design and coding phase, thus spending out coordinated efforts on developing extensions as opposed to a completely custom solution. In addition to starting from an advanced development point, most systems already have an established user and developer community, and they are being used in production mode by various projects. In making use of any existing workflow system there is an associated learning curve, but it is critical that we understand each workflow system’s architecture so that we can be modify and/or effectively use those workflow system’s APIs. 

Two workflow systems, Swift and Askalon, were chosen for detailed evaluation that included the implementation of three prototype workflows (a simple workflow used to test various control and data flows, and two actual LQCD workflows).  Several meetings were held with the development teams of both projects.  At this time neither Swift nor Askalon fulfill some of the fundamental LQCD requirements.  Currently Askalon is more promising, as it could be extended more easily to meet LQCD needs.  We continue to interact with the Swift project, however, as that system could also be extended suitably.  We also recognize the need to look at other workflow systems that have evolved significantly in the past year, in particular, Pegasus.

1.3 Terminology

1.3.1 General Definitions

Participant: An object that produces outputs from the various inputs. 

Participant Product: The output generated by a participant.

Workflow: The procedures in which data and control are passed among the participants according to a pre-defined set of rules. 

Workflow Management System: The system that manages and executes workflows on the computing resources. It is responsible for resolving dependencies among the participants, scheduling the participants, keeping track of participant products and fault tolerance. 

Fault Tolerance: A fault tolerant system provides its services reliably even when faults occur. 

Quality of Service: The level of performance guaranteed by the workflow system. For example, the ability of the workflow system to finish a job within a given time limits. 

Restart: Restart is defined as starting the workflow execution from its original starting point. 

Resume: Resume is defined as starting from the last checkpoint (or the last milestone in terms of LQCD computation). 

1.3.2 Workflow Types Definitions

Template: A workflow template is a pattern that contains a parameterized description of the steps involved in solving a particular problem. 

Ideal: An ideal workflow assumes unlimited resources and it contains only information relevant to solving the problem in the best possible circumstances. In other words, no resource constraints are included. 

Instantiated: An instantiated workflow is the result of the application of relevant input files and parameters to a template by a user. It could include multiple versions of the participants. 

Workflow Instance = workflow template + participants + input parameters and data + output data 

Executable: An executable workflow is produced by applying cluster resource usage policies and constraints to an instantiated workflow by the workflow management system. In other words, the workflow graph is transformed from ideal to something that can be run on an existing cluster. 

1.3.3 Domain Specific Definitions

Lattice: A lattice is a cubic four dimensional space-time grid. 

(Gauge) Configuration: A gauge configuration is a four dimensional (space-time) snapshot of the gluon field. 

Ensemble: An ensemble is an ordered collection of gluon configurations sharing the same physics parameters e.g. lattice spacing (or QCD coupling strength), number of sea quarks and sea quark masses. 

Configuration generation: Configuration generation is a campaign describing the creation of an ensemble. Each step of the workflow(s) of this ensemble generates a gauge configuration which depends upon the output gauge configuration of the previous step. 

Quark Propagator: The quark propagator is the field that describes how a quark propagates or hops from site-to-site of the lattice. Quark propagators are produced (and saved) as intermediate results during a campaign. During a campaign, quark propagators are computed for every configuration in an ensemble for every given set of physics input parameters e.g. quark mass, quark source type. 

Meson 2- and 3-point functions: Meson 2- and 3-point functions are generated by connecting together quark propagators to form operators that create and annihilate mesons. These n-point functions describe how mesons, particles composed of quarks, propagate on the lattice. A campaign might generate hundreds of distinct meson n-point functions. 

Ensemble average: Ensemble averages are the physical results that are calculated in a statistical analysis of meson n-point functions that have been averaged over every configuration in an ensemble. 

Campaign: A campaign is a coordinated set of calculations aimed at determining a set of specific physics quantities. A typical campaign consists of taking an ensemble of vacuum gauge configurations and using them to create intermediate data products (e.g. quark propagators) and computing meson n-point functions for every configuration in the ensemble. 

An example campaign could consist of a single workflow, where the intermediate products are used immediately, or it could be broken up into multiple workflows, with the intermediate products stored for later use. 

Milestone: A milestone is the persistent state of the last intermediate result reached by a workflow instance. 

Extend Campaign: A previously executed campaign can have new input files added, an act that requires further workflow execution. It could also use milestones from a previous campaign and generate additional output files. 

Campaign = workflow instance(s) = template(s) + ensemble + participants + parameters + desired outputs.

2 Test Cases

We implemented two of the most commonly used LQCD workflows, as well as a generic workflow, using Askalon and Swift. The specific details of these workflows are described in this section.

2.1 Generic Workflow Test Case:

Use the MPI program cpi.c to compute the value of pi. Run the program multiple times on 1 to N cores where N is a configurable parameter. Collect the output logs from each cpi trial and post process logs to compare results. Trials should be scheduled in parallel.

What was tested:

· configurability (setting parameter N)

· how parallelism (fan-out? loop?) is expressed

· how a fan-in data dependency is expressed

· output file name binding

· binding of resources (number of nodes) to a job

· scheduling and execution of MPI jobs

2.2 Configuration Generation Test Case

The Configuration Generation workflow captures the Markov chain process of generating QCD gauge configurations. The process starts from an initial gauge configuration and subsequent configurations are generated in series by Monte Carlo evolution of the QCD degrees of freedom. This workflow consists of a simple loop in which each step of the loop depends on the output from the previous step of the loop, thus resulting in sequential Execution. The number of iterations within a loop is defined at the start of a workflow, and the execution may start from a previously generated configuration, as illustrated by the branch in the following figure:
[image: image1.png]
Figure 1 – Sequence of events for the configuration generation workflow. This workflow also illustrates two streams derived from a single configuration
In addition to the input of number of iterations, the Configuration Generation workflow needs a number of physics parameters as its input. These physics parameters define the structure of the configuration to be generated. These inputs often vary from one execution to another and they need to be abstracted out from the workflow definition, i.e. these values should not be hard-coded in the workflow definition.

A thermalized configuration may be selected to serve as the starting configuration of multiple independent (different random number seeds) evolution chains. Independent evolution chains may be run in parallel.

What was tested:

· configurability (physics, algorithm and MPI job parameters)

· how sequential data dependency is expressed

· how multiple sequential chains are expressed

· file naming: binding of physics metadata to file names

· binding of physics and algorithm parameters to jobs

· management of large data sets in non-posix file systems (e.g. dcache)

· workflow monitoring

· workflow system’s fault tolerance capabilities

· workflow system’s error recovery features

· workflow resume after a failure

· workflow extension (resume for a larger number configurations)
2.3 Two-Point Analysis Test Case

The Two-Point analysis is a typical LQCD workflow where particles with defined properties are injected into a lattice (configuration file – the output of the Configuration Generation workflow) and their behavior is simulated. Figure 2 illustrates the various steps involved in a two point analysis.

[image: image2.png]
Figure 2 - Representation of the two point analysis workflow. Lines represent the data dependencies.


The important requirements and properties of a Two-Point analysis are:

· It needs a set of physics input parameters for each task to be provided either by a user input file or by the output from a prior step.

· Number of jobs (tasks) that can be executed depends on the data from input files and/or physics parameters from prior steps.

· Number of nodes needed to run the current task is determined by the binary file to be executed.

· Effective parallelism (total jobs submitted) depends on the data dependency between the various tasks.


The salient features of the Two-Point analysis workflow are the following:

· It consists of many MPI jobs that are run on the same cluster due to data locality.

· Each job requires multiple nodes (tens to hundreds) for its execution.

· The sizes of the files used and generated by these MPI jobs vary from a few Mega-bytes to a few tens of Giga-bytes.

· The files are generally stored in mass storage systems which may require concurrent access and special commands for data movement.

· The steps in the above diagram are iterated over thousands of times in a campaign.
· These iterations are mutually independent and therefore can be executed in parallel.

· Distinct campaigns make use of the same templates but with different sets of physics parameters.

· File and directory names typically encapsulate metadata such as physics parameters.

3 Candidate Workflow Systems Overview

This section provides a list and overview of various workflow systems selected for initial evaluation. Askalon and Swift were selected for further evaluation based on their system architecture, functionalities, features currently supported, source  code availability and the potential for collaborations with the developers of these projects.

3.1 Workflow Systems Reviewed

This section provides more details about the various workflow systems that we investigated during our initial evaluation period. 

3.1.1 Kepler

Kepler extends the Ptolemy II environment, which is based on the Actor-oriented architecture. Ptolemy II was developed for modeling, simulation, and design of concurrent real-time embedded systems using different models of computation. In Kepler, each workflow model is composed of Actors and Directors. The Actors carry out each action and the Director dictates how the control dependencies amongst the various actors are resolved. This feature conceptually allows the same workflow to be interpreted differently depending on the type of the Director.

Pros:

· Control dependencies are maintained by the directors and multiple directors may be used in a nested workflow.

· Decoupled model of computation and workflow, which may allow the same problem to be meaningfully executed according to the director used (e.g. choose sequential execution over parallel execution).
Cons: 

· Available library of Actors is fine grained; For example, modeling a PBS batch processing mimics all the steps involved in launching and monitoring jobs manually.

· Can monitor workflow executions in text mode; a graphical interface is not available.

· Fault tolerance and job scheduling must be modeled by the user as part of the workflow.

· The separation of director from actors is not useful in our case; in our experience it was not possible to exchange the Director from the initial model with a different Director.

· Multi-user support is provided only through the use of a virtual machine for each Kepler instance. This is not a viable solution for LQCD.

· It was hard for the LQCD Workflow Project Team to collaborate with the developers at that the time of evaluation.

Principal developers: Ilkay Altintas, San Diego Supercomputing Center

Project website: http://kepler-project.org/
Collaboration:

· SEEK: Science Environment for Ecological Knowledge

 INCLUDEPICTURE "http://www.kepler-project.org/images/out.png" \* MERGEFORMATINET 
 (http://seek.ecoinformatics.org/)

· SDM Center/SPA: SDM Center/Scientific Process Automation

 INCLUDEPICTURE "http://www.kepler-project.org/images/out.png" \* MERGEFORMATINET 
  (http://www-casc.llnl.gov/sdm/)

· Ptolemy II: Heterogeneous Modeling and Design

 INCLUDEPICTURE "http://www.kepler-project.org/images/out.png" \* MERGEFORMATINET 
 (http://ptolemy.eecs.berkeley.edu/ptolemyII/)

· GEON: Cyberinfrastructure for the Geosciences

 INCLUDEPICTURE "http://www.kepler-project.org/images/out.png" \* MERGEFORMATINET 
 (http://www.geongrid.org/)

· ROADNet: Real-time Observatories, Applications, and Data Management Network

 INCLUDEPICTURE "http://www.kepler-project.org/images/out.png" \* MERGEFORMATINET 
 (http://roadnet.ucsd.edu/)

· EOL: Encyclopedia of Life

 INCLUDEPICTURE "http://www.kepler-project.org/images/out.png" \* MERGEFORMATINET 
 (http://eol.sdsc.edu/)

· Resurgence

 INCLUDEPICTURE "http://www.kepler-project.org/images/out.png" \* MERGEFORMATINET 
 (http://www.baldridge.unizh.ch/resurgence/)

· CIPRes: CyberInfrastructure for Phylogenetic Research

 INCLUDEPICTURE "http://www.kepler-project.org/images/out.png" \* MERGEFORMATINET 
( http://www.phylo.org/) 

· REAP: Realtime Environment for Analytical Processing

 INCLUDEPICTURE "http://www.kepler-project.org/images/out.png" \* MERGEFORMATINET 
 (http://reap.ecoinformatics.org/)

3.1.2 Triana

Workflows in Triana are composed by connecting components, which are equivalent to the concept of actors in Kepler. Control and data flows are handled by the components.

Pros:

· Triana has a graphical interface for modeling, execution and monitoring, and an optional batch execution mode.

· The system design and architecture of the Triana approach make Triana easier to use than Kepler.

Cons:

· Triana does not provide fault tolerance or QoS.

· Triana does not provide job scheduling for multiple independent workflows.

· Component connections in Triana workflows must be reconfigured if the model of workflow computation (e.g. parallel vs. sequential) changes.

· Fault tolerance and job scheduling must be modeled by the user as part of the workflow or integrated to the components.

Principal developers: Ian Taylor, Cardiff University

Project website: http://www.trianacode.org/
Collaboration:
· GridOne (www.grideoned.org)

· Geo 600 (http://www.geo600.uni-hannover.de)

· BiodiversityWorld (http://www.bdworld.org/)
· Environment for Industrial Design Optimization (DIPSO) (http://www.wesc.ac.uk/projects/dipso/index.html)
3.1.3 JBPM

JBPM is an Open source business-oriented workflow developed by RedHat that has multi-user and multi-workflow capabilities.

Pros:

· Distributed system architecture.

· Based on business workflow standards: BPEL

Cons:

· No job scheduling (mapping between jobs and processing nodes).

· Tasks are scheduled based on control flows which are usually triggered by users; data dependencies cannot be represented in this system.

Principal developers: John Koenig, RedHat

Project website: http://www.jboss.com/products/jbpm
3.1.4 Karajan

Karajan is a workflow specification language and execution engine that is available as a part of the Java CoG Kit. The execution engine is based on the Globus Toolkit, while the language is a common purpose XML-based language that can express workflows including conditional control flows and loops.

The execution model includes execution elements (the tasks to be run), and the events generated during the workflow execution. Execution elements can be in different states depending on the current status of its execution. Events can be generated by the elements or the environment, and cause different actions. Basic check pointing has been implemented at the workflow level, the workflow can be check pointed, when all its elements are in consistent states.
Pros:
· Language constructors sufficient to express LQCD workflows

· Workflow check pointing
· Recursion support
Cons:
· Scheduling performed by underlying software, only parameters can be specified from Karajan 

· Tightly coupled to Globus

· Doesn’t provide any abstraction of low level functions.

· A few hundreds of lines of Karajan scripts will be needed to describe a typical LQCD workflow, which makes it harder for the domain scientists to code and maintain those scripts.
Project leader: Gregor von Laszewski, Rochester Institute of Technology

Principal developers: Mihael Hategan, Deepti Kodeboyina
Project website: http://wiki.cogkit.org/index.php/Karajan
3.1.5 Swift

The Swift Workflow system is the next generation of VDL (http://www.ci.uchicago.edu/swift/docs). Workflows described in a Swift Script are incrementally translated and executed using the Karajan engine. Karajan uses the various features of the Globus toolkit for scheduling, execution and monitoring the jobs.

Participants are modeled as functions that have files as input and output. Participant’s data dependencies are defined as files. Participants are triggered as their dependencies are met. 

Participants are identified by unique names, which are statically mapped to actual applications and run time parameters through the configuration files tc.data and sites.xml. This concept of configuration files allows various workflows to be run on different clusters (with the same set of parameters) without necessarily making any changes to the Swift Script. A description of remote execution sites is available in the sites.xml file. It is possible to specify Resource Specification Language (RSL) parameters in the tc.data file, which are converted to PBS parameters.

Pros: 

· Has expertise in Grid computing

· Prior version (VDS) has been tested on other applications and used for production (e.g. SDSS, fMRI, QuarkNet)

· Easy to install and maintain

· Lightweight execution

· Support workflow restart and resume a task

· Does not require a GUI for writing workflows

· Prior version had data provenance (promised to be supported on future releases)

· Developers are local to Chicago area

Cons: 

· Swift is tightly bound to Karajan, which is tightly bound to Globus

· Error messages are confusing and not useful

· Procedural syntax with purely data flow semantics

· It is a non-intuitive language to learn and program

· Binding of objects to variable names is not well understood (by us)

· Limited to just file dependencies

· Data must be mapped to actual file names within the Script

· Lacks dynamic behavior and configuration

· Does not support all workflow patterns (e.g. recursion) (http://is.tm.tue.nl/research/patterns/patterns.htm)

· Developers work on several projects, Swift is only one of the projects

· The main analyst and developer is no longer involved with this project

· Data provenance not yet available

Project leader: Mike Wilde

Principal architects/developers: Mihael Hategan, Ben Clifford, Yong Zhao, University of Chicago

Project website: http://www.ci.uchicago.edu/swift/
3.1.6 Askalon

Askalon is a task coordination and visualization system developed by Prof. Dr. Thomas Fahringer’s research group at the University of Innsbruck, Austria.
In Askalon, the workflows are specified in Abstract Grid Workflow Language (AGWL), an XML-based language. Users can create a workflow model by using the GUI to draw a UML activity diagram or by creating an AGWL file with a text editor. Both graphic and text based interface are provided to define workflow and to monitor runtime performance. 

Askalon has its own enactment engine to execute workflows according to control-flow specifications. Askalon’s GUI is tightly integrated with their enactment engine and the graphical interface can be used to visualize the progress of executing workflows. Askalon also provides various performance modeling, prediction, instrumentation, measurement, and analysis tools.

Askalon provides a meta-scheduler that distributes the jobs among Grid resources (e.g. cluster) using the Globus middleware services (GRAM). Lower-level scheduling is done by existing Local Resource Managers (LRMs), such as Condor and PBS.
Pros: 

· Intuitive and easy to model and understand workflows

· Good functionality provided by graphical user interface

· Provides hooks for performance modeling, measurements and analysis

· Good experience collaborating with developers

Cons: 

· The installation process is complex for the server side installation
· Users need valid Grid certificates and proxy

· Does not support resumption of a stopped workflow

· GUI performance is poor over the network (java-based GUI)

· Need a newer version of Java than the version currently supported by OSG

· Not well tested in actual large scale production.


[image: image12]
Figure 3 – Askalon framework.

Project leader: Thomas Fahringer, University of Innsbruck, Austria

Principal developers: post-docs and students

Project website: http://www.dps.uibk.ac.at/projects/askalon/
3.2 Other Systems not reviewed

The above mentioned list of workflow management systems is not meant to serve as an exhaustive list of currently available workflow systems. Please refer to the following article: [1] for more details about these workflow systems. The workflow systems that were evaluated but not mentioned in this document include:

Pegasus: uses the earlier version of the VDL, unlike Swift, which is based on the current version of VDL. A decision was made by the LQCD workflow project team to purse Swift rather than Pegasus. Project website: http://pegasus.isi.edu
DAGMan: provides the infrastructure to execute the workflow described by a DAG (Directed Acyclic Graph) to completion. It does not provide most of the functionalities that were required by the LQCD workflow project. Project website: http://www.cs.wisc.edu/condor/dagman

Martlet: is currently in its early design and development phase. It should be noted that the Martlet’s concept of recursive structure will be very useful for the LQCD workflow project. Source publication: http://www2007.org/papers/paper479.pdf

3.3 Summary

We summarize the salient workflow features for each of the evaluated systems as follows:

· Modeling: (G)raphical or (T)extual

· Execution Interface: (G)raphical or (B)atch

· Language Constructs: (D)ataflow or (C)ontrol-flow

· User Coordination: (S)ingle-User or (M)ulti-User

· Workflow Coordination: (S)ingle workflow/session or (M)ultiple workflows/session or (O)ne workflow/machine or (N)-workflows/machine 

· Reliability: (F)ault tolerance and (Q)oS capabilities

The following table summarizes the features supported by the various workflow systems:

	
	Kepler
	Triana
	JBPM
	Swift
	Askalon

	Modeling
	G
	G
	T
	T
	G/T

	Execution

Interface
	G
	G/B
	G
	B
	G/B

	Language

Constructs
	C
	D
	C
	D
	C

	User 

Coordination
	S
	S
	S
	S
	S

	Workflow 

Coordination
	O
	S
	M
	N
	S

	Reliability
	No
	No
	?
	F
	Q(1)


4 Workflow System Review based on LQCD Workflow System Requirements Documentation

This section describes how the Askalon and Swift workflow systems meet or do not meet the LQCD workflow project requirements based on our experience in implementing the above mentioned workflow test cases.

4.1 Workflow Templates

	No
	Description
	Swift
	Askalon

	1.1
	Workflow template modeling

	1.1.1
	Provide means for text-based modeling
	A workflow is described in SwiftScript, which is based on VDL.
	Abstract Grid Workflow Language (AGWL) (XML-based) is used to describe workflow models. It is inconvenient to edit AGWL scripts using a text editor.

	1.1.2
	Provide means for graphical-based modeling
	Not available.
	Has a UML activity diagram editor that is stored as teuta file. These UML models are compiled down to AGWL. AGWL can be easily converted to teuta format and vice versa.

	1.2
	What do we want to express using the workflow modeling language

	1.2.1
	Participants
	SwiftScript procedures.  
	Diagram element called activities.

	1.2.2
	Dependencies among participants (order, parameters, and data)
	Data dependencies between participants in a SwiftScript are defined by shared input and output parameters to functions.
The parameters used within a SwiftScript are file names that must match exactly the names in the file system.

Dependency is resolved strictly based on existence of files.
	Lines connecting participants indicate ordering and it can be modeled to pass data between participants. Control dependencies are supported through dataflow specification.

	1.2.3
	Parameterized inputs (generated code that remains intact for the duration of the workflow execution)
	Generative conditional and loop constructs such as if-then-else, foreach and while. If statements are not evaluated during runtime, rather they generate nodes in the dependency dag.
	A generic workflow can be constructed, where different sets of input parameters are passed to various workflows (see AGWL parallelfor and parallelforeach).

	1.2.4
	Procedural control structures (conditionals, looping, case)
	Generative conditional and loop constructs such as if-then-else, foreach and while
	Conditional and looping constructs are represented in AGWL and it supports dowhile construct.

	1.2.5
	Resource constraints
	Fixed for duration of the workflow run - based on the parameters in RSL specification, commonly used ones are maxCPUTIme, hostCount and project.
Resource constrains can be specified individually for all the participants in a workflow in the tc.data file before the execution phase.
	Currently fixed for the duration of the workflow run. Allowed on each participant - based on the parameters in RSL specification of each activity. The current version supports these parameters to be set as a part of the workflow. 

Resource constraints can be specified for all the participants in a workflow only during the editing phase and not during the execution phase. 

	1.2.6
	Physics parameter types (per participant)
	The primitive types available in SwiftScript are integer, float, boolean, date, string and URI. These types can be used to define arrays and structs. 
	See 1.2.8.

	1.2.7
	Annotations and comments
	Accepted within the script and start with the hash character (#) or are surrounded by C style comment notation (/* */).
	AGWL can be commented, diagram annotations are allowed.

	1.2.8
	General parameterization
	Certain global parameters can be defined as a part of the Swift Script or may be given as command line arguments.
In addition, Swift allows user parameters to be passed within a text file (key-value pairs) using a mapper.
	The input parameters of a LQCD workflow are specified in the “initial node” of an Askalon workflow, and these parameters can be provided as an input to other participants by constructing data dependencies from the initial node.

An alternative approach to pass the parameters to any node is to add an activity that retrieves parameters from a database (or text file) and passes those values as input to other activities through output ports.

The workflow activities are defined before its execution and it cannot be designed to adapt to different sets of input parameters, i.e. the parameter settings are fixed for the duration of workflow execution.

	1.3
	Template identity

	1.3.1
	Unique identification
	SwiftScript file name.
	AGWL file name.

	1.3.2
	Composite templates (from other templates or instances)
	Participants and/or common workflow sections may be defined in the same SwiftScript file or it could be defined in separate files and included into the main SwiftScript.

Procedures can call other procedures.
	Participants are modeled as activities. The activity allows binaries, scripts or remote services to be connected through input and output ports in a workflow.

Each activity is unique and registered to the Execution Engine. Registered activities can be used by multiple workflows.

An activity can be a workflow. A feature called ‘workflow activity’ is present, which enables the reuse of workflows.


4.1.1 Swift Notes
The scope of variables in SwiftScript compared to a regular scripting language is very restricted, e.g. variables can be assigned values only once within a script. This is due to the declarative nature of the SwiftScript language.
It is not possible to assign values to parameters based on the output of another participant. To overcome this limitation, a participant’s output has to be written to a file which is then read as an input parameter file by the other participants.

In our experience with SwiftScript, we found that the control constructs were sufficient for defining the Configuration Generation and Two-point analysis workflows.

Some aspects of the various LQCD workflows can be modeled as templates in SwiftScript, but this required some programming effort due to the strict rules governing the definition and usage of parameters in Swift Script.

The creation and modification of a workflow template (SwiftScript) requires moderate knowledge about the Swift language, making it somewhat difficult to use for domain scientists.

Estimated effort to improve the use of variables: changes to the SwiftScript language will require discussions with the Swift developers. Changes such as the modification of the behavior of the variables may not be easily supported by the current design and/or implementation.

4.1.2 Askalon Notes
If the activities and their interfaces are defined clearly, it is not hard for a domain scientist to understand, create or modify an Askalon workflow.

4.2 Workflow Instantiation

	No
	Description
	Swift
	Askalon

	2
	Workflow Instantiation

	2.1
	Verify user supplied values

	2.1.1
	Verify type of user supplied values
	SwiftScript language is responsible for type checking
	Type checking is available for Askalon defined types only.

	2.1.2
	Verify range of user supplied values
	It is possible to verify the validity of the range of parameters passed as part of command line arguments to SwiftScript.
The verification must be added within the SwiftScript as the workflow is created.
	There is no way to specify the parameter range for user defined types.

Checking must be done at the workflow level, by adding if-then-else type constructs.

	2.1.3
	Validate template instantiation.
	Swift provides a –dryrun command line option that verifies whether a workflow instance is valid. However this test does not guarantees that the workflow will run without problems.
	The status of the current workflow is displayed as a part of the GUI. The refresh button can be pressed to the current status of the workflow model.

	2.2
	Workflow instantiation identifier

	2.2.1
	Unique identifier for each workflow instantiation
	A unique name is generated based on the SwiftScript name and a system generated unique identifier.
	Askalon provides a unique identifier for each workflow instantiation automatically.

	2.2.2
	Same identifier for equivalent workflow instantiations.
	Not Supported.
	Not supported.

	2.2.3
	Management of workflow instantiations.
	Not supported.
	Not directly supported. Database does track the current state of all instantiations.


4.2.1 Swift Notes
The Swift language is a strong-typed language that coordinates the execution of tasks based on data dependency. Swift does not provide programming support similar to a general purpose scripting language like Perl; that introduces a lot of restrictions on the types of operations that can be performed on physics parameters.

An alternate method for passing the input parameters to an application is to have all the input (physics) parameters encapsulated into a text file, and pass the filename as an input parameter to the participant. The parameters are parsed directly from the input file by the physics applications or its associated wrapper and the range and type checking of the parameters must be performed by the wrapper script or by the physics application.

The use of command line arguments or text files to input the physics parameters allow the users to reuse the same workflow on different campaigns. The other main advantage of this approach is that the physics parameters can be changed without making any modification to the SwiftScript. The number of processors required to run the participants cannot be specified as a part of the SwiftScript. The binary file’s location and RSL parameters are specified in the separate configuration file tc.data.
When a template is instantiated by executing the SwiftScript, a unique name is generated by Swift based on the template name and a unique identifier (instance Id). For the template named 2pt.swift, an example of generated identifier is 2pt-odr523nak9ep2.

Currently, variables are assigned by hard coding values or by using the @arg function, which assigns the variable with an argument specified on the command line. Note: @arg function doesn’t allow arrays to be passed as arguments. The implementation of an input files feature where the parameters to the workflow are listed as key/value pairs will enable the scripts to import the variables. Swift is implemented in Java, which already provides a Property class, and we will have to add a type checker and include a mapper-like function in the SwiftScript language.

4.2.2 Askalon Notes

The parameter types we have tested in the evaluation include float, integer, string and file. Some of the types that are listed in Askalon documentation that weren’t tested are: boolean, decimal and collection. 
Askalon provides a type verification mechanism during the job submission phase.  If the parameter value does not match the parameter type that was defined in AGWL, then Askalon’s runtime system will throw an error. Askalon’s verification process is limited to its internal types listed above, and there is no way to specify the parameter range for a user defined type.

Askalon provides a unique identifier for each workflow instantiation automatically; and Askalon doesn’t provide the users any control over the identifier selection.

The input parameters for each workflow are specified in the AGWL file. Askalon doesn’t provide a placeholder for the parameters, and thus all the changes to the input parameters are performed by editing the AGWL file. It is possible to make Askalon accept input parameters for various participants through a text file by hard coding the text file details in the executable/wrapper for that participant, but this approach disables the data verification functionality of Askalon.

An alternative approach for inputting the set of parameters is to define a new activity that triggers a parameter reading from a database or a text file, and this activity then provides these sets of parameters as inputs to other activities through its output ports. This ‘input’ activity may be reused by workflows templates that use similar parameters.
4.3 Workflow Execution
	No
	Description
	Swift
	Askalon

	3
	The scheduling system must perform the following three tasks:

	3.1
	Identify the participants that need to run
	Invocation of Swift causes a Swift Script to be translated into a Karajan workflow description.  Poll the underlying local scheduler for completed tasks. Kick off new jobs when dependencies are ready.
	The Askalon enactment engine identifies participants. Registers to GRAM for completion notification from local scheduler. Starts the next participants in the workflow sequence based on these completions.

	3.2
	Map the participants to particular resources
	Can do this statically via configuration files using unique participant names. This is inconvenient for domain scientists as a different participant has to be defined for each unique set of input parameters.
	Grid flavor: Enactment engine chooses particular grid site.  Cluster version: Cluster is treated as a grid site, and participants are scheduled on that site using the local scheduler (e.g. PBS). Early cluster version required a different activity type to be registered for each different kind of mapping.

	3.3
	Resolve dependencies across system boundaries
	Participants can be described as available by different providers (one participant/provider per each line in the tc.data file). However the execution engine selects the provider ‘randomly’.
	Each activity can be mapped to a different “GRID site” that is registered with the Askalon resource manager.

	3.4
	Schedule the execution of the tasks.
	Swift schedules the tasks that are ready to run when all their dependencies are met. Swift uses Karajan to submit jobs. Note: Dependencies are met when the required input files become available in the file system.
	The enactment engine submits a job through GRAM to the local scheduler after all of the control dependencies of that participant are met.  The developers claim that it is possible to limit the number of job submissions from each workflow instance and also control of queue sizes of the task loop component.


4.3.1 Swift Notes
The Swift execution engine does not prioritize execution of participants to maximize the utilization or performance of the resources. In Swift, participants are submitted for execution whenever their data dependencies are resolved. No optimization can be implemented at the Swift level but it might be possible to implement optimizations at the Karajan level.
4.3.2 Askalon Notes
The Askalon’s enactment engine does not currently provide support for DAG even though AGWL provides support for modeling workflows using DAG. The developers claim the addition of DAG support is possible and will be available soon.
4.4 Monitor Progress
	No
	Description
	Swift
	Askalon

	4
	Monitor Progress

	4.1
	A workflow system must:

	4.1.1
	Passively tracks the execution of workflows (query state of the executing workflows)
	Announces task starts, completions and errors to a log file or stdout.

	GUI highlights diagram elements to show status and also displays a console log (appends text).

	4.1.2
	Record relevant states of all executing workflows e.g. participant and milestone status
	SwiftScript log file output. (per workflow instance).
	Participant state changes recorded to console log file and database (postgres).

	4.2
	System allows a user’s agent to register for event notifications (active display)
	Not supported.
	Works as a web service in their latest version. Requires use of their Java API.


4.4.1 Swift Notes

No decoupled monitoring tool from the execution engine.

No graphical monitoring tool is provided by Swift.

We need to add an external application that summarizes the status of all the running workflows, thus avoiding the need for the users to parse through large log files.

We need to add a graphical interface to the workflow execution engine that displays the current status of various participants.

Execution log files can be parsed by an external application or the execution engine can be modified to report the execution status.

There are several workflow displays available from the other workflow projects. Swift/Karajan can be combined with graphics provided by Askalon, Triana or Kepler.

4.4.2 Askalon Notes

Askalon’s new version of monitoring tools needs to be tested thoroughly. The initial tests with the new version show that the monitoring tool is very useful in tracking finished participant’s results while workflow instance is still running.
4.5 Execution History

	No
	Description
	Swift
	Askalon

	5
	Workflow Execution History

	5.1
	System provides a means for storing historical states of all the workflows executed 
	Information is stored in uniquely named log files and directories for each workflow instance’s execution. Produces a graphviz dot file also.
	Console logs provide additional details but it does not provide individual log files.  RDBMS hold history of all workflow executions.

	5.2
	System provides a means for storing historical statistics of all the workflow executed
	Not supported.
	Provides run-time information including queue times and wait times (inferred from graphical monitoring tool).  Further information can be obtained by querying their RDBMS database.

	5.3
	Database support for storing the statistics
	No.
	Yes (Postgres). 

	5.4
	System must be able to collect live runtime details from the monitoring system and maintain overall workflow status
	Log file has last completed participant information.
No API provided to get information from the monitoring system.
	Database contains overall status. 
An external monitoring system could inject more information into this database. Event triggers from Askalon can be used to retrieve data from the external monitoring system.

	5.5
	System must provide information about all the submitted, executing and completed workflow instances.
	Only available by parsing individual log files located in different directories from various runs.
	Database holds this information. Users must query the database to obtain these details.

	5.6
	Historical details may be used for predicting future executions and help to improve performance.
	No.
	Limited support is currently available based on historical performance statistics.


4.5.1 Swift Notes

The log files generated by Swift during the workflow execution contain the history of a particular workflow instance. It will be beneficial to implement a software layer to extract the details from these log files and to save the execution history into a database. Swift does not provide a centralized repository that provides details of the historical workflow executions.
We need to develop an external tool that parses the Swift’s execution log file and extracts information about execution time of each participant, number of nodes used and exit status. The Swift/Karajan log file structure has to be studied, and a tool has to be developed to extract all the useful information from these log files and store it in a RDBMS.

4.5.2 Askalon Notes

The console log messages and the database support provided by Askalon fulfill all our requirements. We will have to create a web portal that would make it easier for the users to query details from the database.
4.6 Execution of Multiple Workflows

	No
	Description
	Swift
	Askalon

	6.1
	Multiple workflow instance handling

	6.1.1
	Concurrent management of many workflows submitted by many different users.
	No concurrent management.

Independent instances of Swift (the execution engine) can be run by the same or different users, using a single installation of the product.  The developers claim that multiple instances of Swift can share the same Karajan engine. Our experience shows that Swift doesn’t provide the user’s with the ability to run multiple workflows using a single instance of Karajan execution engine.
	Concurrent management is possible when using their service architecture (the default type of installation).
Independent GUIs are used for submitting and monitoring the execution of workflow instances.

Execution is carried out by the Askalon Execution Engine.

	6.1.2
	Centralized management and coordinated (co-scheduled) workflow execution for optimal resource utilization
	No Support.
	May be supported in the future.  The hooks are provided, but we need to develop the optimization functionality.
Priorities can be easily added by replacing queues with priority queues throughout the Askalon components.


4.6.1 Swift Notes
Implementing the interaction between Swift and Karajan into something more along the lines of service oriented architecture would be desired (in case this is not already possible). Swift and Karajan would have to be decoupled in such a way that there is no functional overlapping between the two systems. This change would allow a single Karajan execution engine to receive participant execution requests from multiple Swift instances, which is similar to the Askalon architecture.
4.6.2 Askalon Notes
Based on the Askalon framework architecture the addition of the feature to improve the execution of multiple workflow instances is possible without major modifications.
4.7 Quality of Service

	No
	Description
	Swift
	Askalon

	7
	Quality of Service

	7.1
	Does the system provide means to specify priorities or deadlines for various workflows and/or activities within a workflow?
	Provides no QoS. Support for this option must be implemented at the local scheduler level.
	Different priories could be assigned to different workflows by the execution engine (not as a part of the model). 

	7.2
	Is it possible to throttle the number of jobs being submitted to the cluster based on cluster usage?
	Not supported.
	Limited support is provided.
Developers claim that the size of internal queues can be limited to provide throttling.


4.8 Staging of Data Files

	No
	Description
	Swift
	Askalon

	8
	Staging of data files

	8.1
	Workflow system may provide a method of specifying data that needs to be prefetched.  Participants must carry any prefetch action.
	There is no explicit support provided by Swift for prefetching in data files.  Prefetching must be designed into the workflow.
	See Swift section.


	8.2
	Prefetched data may be cached by the system for later use.
	Swift reuses an input file that has already been staged.
	Checks if a file is present and runs gsiFTP to perform the transfer.


4.9 Fault Tolerance

	No
	Description
	Swift
	Askalon

	9
	Fault Tolerance
	
	

	9.1
	A system should identify failures based on workflow state and react to mitigate the fault penalty. Cases and system responses:

	9.1.1
	A participant fails
	Retry participant N times before stopping entire workflow execution. N is a system-wide setting. (default for N is three)
	Tries to run participant on a different GRID site. Workflow does not stop. Stop further scheduling of dependent participants.
Implementation of continuous workflow execution despite a failed participant is on the list of future improvements. This will allow campaigns to proceed despite a failing sub-workflow. Currently the whole workflow instance is stopped.

	9.1.2
	A participant hangs
	Not detected directly. Relies on local resource manager timeout to fail the job.
	Same as Swift.

	9.2
	System can react to failures indicated by a facility health monitoring system
	No.
	Not currently. Feature can be added by manipulating subscriptions to notification service and adding hooks to monitoring system.

	9.3
	Restart from milestone
	Yes, restart from last failed participant.
	Same as Swift, but it is currently not functional.


4.10 Assumptions Regarding Intermediate Files

	No
	Description
	Swift
	Askalon

	10
	Assumptions regarding Intermediate Files: Capabilities of the storage system are not defined as a part of the workflow system. The workflow system is not responsible for managing (e.g. the lifetime of) these files.

	10.1
	Workflow system must check whether the intermediate files are available before executing a participant
	All required input files must exist or workflow fails. May be able to satisfy with a special swift function using phony dependency files.
	Need a fancier activity that checks if the cached intermediate files are present – otherwise the workflow fails.


4.11 Data Provenance

	No
	Description
	Swift
	Askalon

	11
	Data Provenance

	11.1
	A schema is a definition of the attributes that describe the contents of a data product from a participant. Must provide schema management facilities for describing data objects.
	No provenance support.
	No provenance support.

	11.2
	The workflow system must store records conforming to these schemas (i.e. data product types) for all participant generated data files.
	No Support.
	No Support.

	11.3
	Users and the workflow system must be able to query the provenance repository to discover facts about the data.
	No Support.
	No Support.

	11.4
	The provenance repository must be able to track multiple parent relationships. In other words, track the ancestry of output data, assuming that output data are derived from input data, thereby recording each input as a parent
	Might be able to mine from Swift execution trace log file.
	Database contains history of jobs run. Would likely need to correlate this with the model data in the AGWL file to discovery data dependencies.

	11.5
	The provenance repository must be able to trace production of data files through participant and all of the workflow types: template, ideal, instantiated, and executable (see glossary in requirements document for workflow type).
	Level of traceability unknown.
	Level of traceability unknown.


4.11.1 Swift Notes

The Swift precursor (VDS) has a data catalog used for data provenance. The addition of this feature to Swift is planned by the developers.
4.11.2 Askalon Notes

The monitoring database (Postgres) could be used for data provenance tracking. Developers are evaluating this possibility.
4.12 Execution of Campaigns

	No
	Description
	Swift
	Askalon

	12
	Execute a campaign

	12.1
	Run a workflow for each configuration in an ensemble. Input ensemble, associated physics parameters and data outputs define data processing dependence.
	A campaign must be encoded within a SwiftScript. You may be able to write a campaign using Swift function which invokes other Swift functions.
	Can use the composite workflow feature in Askalon to compose a campaign.

	12.3
	Interruptible workflow instance 
	Kill the engine. This will abort the executing workflow.
	Provides buttons to interrupting a workflow, but underlying implementation was not fully functional during our testing.

	12.4
	Ability to stop participants within a workflow instance
	Not supported.
	Not supported.

	12.5
	Must have persistent state, such that it can be continued or extended from a set of completed workflow instances.
	Failed workflow can be continued from last successful participant. No application specific data stored.
	There is persistent state for the position in the workflow, but no application specific data (see requirement details). 


4.13 Dispatch Campaigns

	No
	Description
	Swift
	Askalon

	13
	Dispatch Campaigns

	13.1
	The user submits a campaign in terms of workflow instances. The system executes all instances to completion.
	Swift does not support the concept of a dispatching service, i.e. there is no workflow server to which campaigns can be sent for execution.  Each workflow instance requires a separate invocation of Swift.
	The Askalon cluster version does not provide a dispatching service.
In the Grid version campaigns (workflow instances) can be dispatched through the client interface (java web start).

	13.2
	Scheduling among workflows  provided
	No
	Possible if we use the provided hooks.

	13.3
	Support for remote participants
	Yes (GRID)
	Yes (GRID)

	13.4
	Running N independent workflow instances with unique parameters and configuration files
	As Swift supports the parallel-for construct, it is possible to have multiple campaigns executing with different configurations/parameters simultaneously. The only drawback of this approach is that the entire structure has to be hard coded and loaded up statically and it cannot be created or modified dynamically.
	Similar to Swift support. The data provided at a dataport are read as the workflow is executing and can be mapped into parameters for a dependent activity.

	13.5
	Control over groups of running workflows (starting, stopping, etc.) 
	No, other than termination of individual Swift instances.
	No support yet, but discussed adding a throttling parameter for unrolling parallel constructs.

	13.6
	Extending ongoing campaigns with new participants instances and dependencies
	No support. Lack of coherent historical data across workflow runs makes this difficult.  One cannot change the logical structure of the workflow and expect restart to work. No support for examining prior accomplished work when continuing a campaign (Previously accomplished work must be visited by Swift in exactly the same order).
	Similar problems are present in the current implementation of Askalon. The historical database may allow for this functionality.
Developers plan to add a feature that allows running workflow instances to have portions not yet executed to be changed.


5 Non-Functional Requirements
This section discusses other non-required aspects, which are still relevant for usability and maintenance of the system.

	No
	Description
	Swift
	Askalon

	1
	Availability of source code
	Open source free to download. The source code, including the underlying execution engine, is available under the Apache License (http://www.apache.org/licenses/LICENSE-2.0). The Swift project has the following support web page: http://www.ci.uchicago.edu/swift/support that contains links to developers email list, user email lists and to a Bugzilla reporting system.
	Askalon’s source code was obtained after signing a license agreement with the Askalon developers and University of Innsbruck, Austria. The development of Askalon is also based on JAVA Cogkit.

	2
	User Friendly Interface for running workflows (user friendly means provides help and good error messages)

	2.1
	Command Line
	Yes (trivial – command for submission). The ‘swift’ command line provides some help options.
	Not tested.

	2.2
	GUI
	No
	Yes

	3
	Error reporting
	Obscure error message do not help a user solve problems (java stack traces and script compilation errors)
	Some of the messages we observed point to specific issues. (limited experience in this area).

	4
	Robustness (e.g. power failure or management processes killed)

	4.1
	Single point of failure (exception or otherwise) should not cause the entire system to fail.
	Recovery is by hand.
	Recovery is by hand.

	4.2
	Can it recover from the last checkpoint or milestone
	Yes, but the user will have to manually perform the recovery process.  Orphaned activities (running ones) must complete first (responsibility of the user to be sure of this). In other words, internal state is not persistent for the engine.
	Same as Swift.  Internal state is not persistent.

	4.3
	Can the workflow system query the status of the participants, when recovering from a failure and update the workflow’s state
	Only the last finished while Swift was still logging.
	Askalon is blind to previously executing part of workflows (only completion transactions are currently in the database). Recovery is possible because of status database, but it is not implemented in the current version.

	5
	Extensibility

	5.1
	Ability to easily incorporate new functionalities to the workflow system
	Hooks for adding mappers.
It is possible to expose Karajan functions directly in SwiftScript code, but this approach is not recommended by the developers

Documentation is poor.
	Hooks for listening to published events. Published database schema. There appears to be other user-accessible APIs but it is not documented.

	6
	Scalability

	6.1
	Support thousands of participants and hundreds of workflows, tens of campaigns. Actively track thousands of output files
	No experience.  Polling may be an issue.
	No experience.  Polling may be an issue.
According to developers, the largest test of Askalon lasted 3 days supporting tens of users using the Grid version.

	7
	Modularity

	7.1
	Decoupled Components
	Unknown. Swift is tightly coupled with Karajan and workflows written as Swift Script are translated into a Karajan description. Swift is not modular enough to make it work other workflow execution engines.
	Event system and database. Fault and Scheduler pieces appear to be components, but we do not understand them well enough.  Diagram of system shows modular components.

	7.2
	Easy to modify a component
	Unknown in general. The mappers are fairly straightforward (java code built to an API Swift provides).
	Unknown.

	7.3
	Possibility of distributing the components on multiple machines for better load balancing and reliability
	Unknown.
	Demonstrated separation of modeling /monitoring tools from execution engine.  Database can also be placed anywhere.

	8
	Cross Platform

	8.1
	Support for AIX 
	Unknown.
	Unknown.

	8.2
	Support for Cray architecture
	Unknown.
	Unknown.

	8.3
	Support for Sun hardware, architecture and OS.
	Unknown.
	Unknown.


5.1 Swift Notes

Swift depends on the CoG Toolkit, which supplies the Karajan execution engine and PBS provider. These packages are developed and maintained by the same institutions developing Swift.
A user has to perform the following steps to execute a workflow using Swift:

· Code the workflow as a valid Swift Script by using a text editor.

· Edit the swift’s configuration file: tc.data to include the necessary details about each participant.

· Execute the command “swift” to start the execution of the workflow. The only mandatory argument needed by this command is the workflow specification file (“.swift” file). The “swift” command provides many optional parameters such as: debug and verbosity. 

5.2 Askalon Notes

Askalon is based on GT4 and CoG Toolkit.
A user has to perform the following steps to execute a workflow using Askalon:

· Compose the workflow by using the GUI or by editing the teuta/AGWL file by using a text editor.

· Register each participant individually by editing the GWDD configuration file and by using the register option from the GUI. Participants already registered can be reused by other workflow templates.
· Askalon’s GUI is started easily with a single command once the user has set up all of Askalon’s configuration files. The GUI interface is used to execute the workflows. 
6 Discussion
6.1 What will it take to bring a product up to our requirements level? (The essential parts)

The critical requirements of the LQCD workflow project include data provenance, fault tolerance, progress monitoring, campaign execution and execution history. Neither of these two workflow systems fully meets our requirements in these aspects and further development is needed in order to support this minimum set of requirements.
Data provenance is not supported on either system. The Swift developers have experience in this area from the previous product; VDS, and this feature is to be implemented in a future versions of Swift.

Askalon has a framework that includes a database for tracking execution status. The same structure can be extended to implement data provenance. Developers are considering the addition of this feature. In case Askalon developers do not pursue this extension, the addition of data provenance will be responsibility of the LQCD group (that is true for other features for both systems).
The fault tolerance aspect comes second on the prioritized requirement list. Due to the long time period of execution involved in LQCD campaigns, they will be subjected to planned and unplanned power outages and hardware failures (common for large sized clusters as the ones in use). The ability to suspend, resume and recover workflows is mandatory. Both systems have limited support for fault tolerance.
The provision of monitoring the executions of various campaigns is also needed in conjunction with the ability to control the execution of workflows. Through a monitoring system it will be possible to quickly detect hardware and software problems during campaign executions (which an ideal system would automatically detect). Askalon has an advanced monitoring tool that logs to a database the status of various participants and workflow. On the other hand Swift only reports information about running workflows to text based log files, requiring us to develop the monitoring infrastructure.
Campaign execution is a major concern. Current workflow tools are good at expressing data and control dependencies in an abstract way, but they are deficient at mapping abstract participants into instantiated participants (executable code). None of the current workflow systems support runtime flow control, e.g. modifying the execution of a particular participant based on some intermediate results.
6.2 What is the value-added in using a workflow tool or language? (As opposed to custom solution)

From the user perspective a workflow system should provide a higher level of abstraction than the current LQCD solution (scripting languages). The main benefit of using a well-defined workflow language to express LQCD campaigns, in comparison with the current solution, is that the domain scientist will no longer need to include code in their production scripts to check for failed jobs, and resubmit them, or track the data products, thus making the production scripts more robust and less error prone. The cost of migrating to a new workflow system is its associated learning curve, which could be accelerated through training sessions and in-depth documentation that includes example of best practices.
In order to modify an existing system and to include the features needed by the LQCD project, the workflow system must be flexible enough to add custom functionalities (e.g. through pluggable modules or services). The process of implementing extensions to an existing workflow system will be much easier if there is a well established user and developer community for that workflow system.
In summary, current workflow system language structures do not appear to be better than the scripting language solutions we use now, though the situation could change when scientific workflow systems become more mature. The users and developers may not be interested in learning and using a new language and toolset unless it can be shown to them that it increases productivity (e.g. by simplifying running, monitoring, and physics analysis).

6.3 What is required for people to use these systems? (Training, deployment)

Adequate documentation and training for effective use of workflow languages is required. Developers should provide a strong set of templates and participants that cover most LQCD needs. Best practices documentation for domain scientists is required.
6.4 How good is the available documentation and error reporting?

The implementation of our use-case workflows on Swift and Askalon using solely the available documentation and examples was not possible. We had to contact the developers often to resolve our issues, and this could be easily solved by having better examples and documentation. These systems do not adequately inform users about the sources of errors and/or describe the errors.
7 Conclusion
We find that none of the evaluated systems could be readily used for LQCD workflows, but with sufficient effort at least Swift and Askalon could be modified to fulfill all of the LQCD workflow project’s requirements. Both of these workflow systems need additional front-end (e.g. template, participant and parameter management) and back-end (e.g. data provenance and participant state) facilities. These front-end and back-end systems will need user interfaces for maintenance and data queries.

The Swift language is non-intuitive. Little is known about how to extend the framework to include desirable features. The current execution model, in which each user runs a private copy of the framework, does not support global optimization (e.g. batch job submission control, effective and optimized cluster utilization).
Askalon appears to have all of the necessary interfaces available to make these extensions. Askalon developers have recently made major improvements, partially motivated by discussions with our group. The system still lacks some important features but the framework allows extensions and optimizations. Askalon supports both centralized and local workflow executions. The centralized model uses a single workflow service that can handle multiple users and workflows concurrently, and this model can be easily extended to support global optimization.
We are currently analyzing and prototyping the front-end and back-end subsystems specific to LQCD project, independent of any particular workflow system.  The front-end will hold participant types and instantiations (using historical data). The backend will hold participant run state and computed product information. We will initially use these front-end and back-end to instrument the current LQCD production.
Both of these workflow systems need to be enhanced to provide a better runtime flow control and global optimization. The computing environment for a campaign execution may need to be configured and reconfigured during execution based on runtime information. Current workflow systems rely on local schedulers, which is not adequate for global optimization. We are investigating two-level workflow scheduling to optimize workflow execution. The first level of scheduling maintains the workflow structure, and the second level can reconfigure the execution of participants. Two-level scheduling would better enable global optimization.

8 References

[1] Jia Yu and Rajkumar Buyya, A Taxonomy of Workflow Management Systems for Grid Computing, Technical Report, GRIDS-TR-2005-1, Grid Computing and Distributed Systems Laboratory, University of Melbourne, Australia, March 10, 2005. (available at http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf)

Task Loop



Run workflow instance (AGWL)



AGWL interpreter



Controller



GT4 WSRF Container



GUI



Callbacks



GT CoG Kit



Execution Framework



Scheduler



Scheduled Tasks



Unscheduled Tasks















Events



Logging



Fault Handler



Restart Job



Predictor



GRAM/Glare



Askalon Components




















- 28 -

- 27 -

