A Proposed Kalman Filter Track-Finding
Algorithm and Toolkit

H. Greenlee

Introduction

* [was motivated to write down these thoughts as a result of Ben
Jones' presentation on Feb. 15 larsoft meeting.

— Basic idea 1s to do 3D track-finding directly using Hits.

— Avoid overwhelming combinatoric fake space point background
from reconstructing space points before track-finding.

— Primary use case: Starting from 3D seed tracks, use Kalman filter to
define a road for adding Hits. Use Kalman fit to update estimates of
track parameters.

* Refer to the following document I posted on larsoft-svn redmine
dated Mar. 8, 2012:

— A Proposed C++ Toolkit for Kalman Filtering in Larsoft.

Kalman Filter

Error envelope

-

Current
surface

A ?/

Next
surface

Track

Measurements (“hits”)

* Propagate track from current surface to next surface containing

candidate measurements.

* Find measurements within road defined by track error.

* Use measurement to refine track parameter estimates.

* Kalman filter 1s a tool for both pattern recognition and track fitting.

3

Overview of Proposed Toolkit Classes

Linear Algebra.
Surfaces.
Tracks.
Measurements.
Propagators.
Interactors.

Persistent Tracks.

Linear Algebra

* Path of least resistance is to use root linear algebra classes
(TVectorD, TMatrixD, TMatrixDSym).

— Root classes preallocate more memory than necessary.

* After some investigation, I now prefer boost linear algebra
(boost/numeric/ublas).

— Boost memory management is way better than root. Allows to
preallocate exactly the right amount of memory on stack.

Surface Classes

Destination for track
propagation.

Define local track parameters
and measurement coordinate
systems.

In larsoft, we will want
unbounded and (optionally)
bounded planar surfaces.

Surface Base Class

!

Unbounded Plane

i

Polygon-Bounded Rectangle-Bounded
Plane Plane

Track Classes

Track without errors.

— Surface.

— Track parameters.
Track with errors.
— Error matrix.
Track with fit.
— Propagation distance.
— Chisquare.

Track with measurements.

— Associated measurements.

Track State
Without Errors

!

Track State
With Errors

T

Track State
With Fit

|

Track State
With Measurements

Measurement Classes

Attributes.

— Measurement surface.

— Art pointer to associated RecoBase
object.

— Measurement vector + error matrix.

Measurement Base Class

?

— Prediction vector + error matrix.

Wire-Time Space Point
Measurement Measurement

— Residual vector + erorr matrix.
— H-matrix.

* Jacobian of transformation from track
parameters to measurement coordinates.

— Kalman gain matrix.

Measurement Classes (cont.)

* Measurement class interface.

— The prediction, residual, H-matrix, and gain matrix attributes of the
measurement class are specific to a particular track hypothesis.

— The measurement class will require a nontrivial prediction method
(pure virtual in base class) to fill these attributes.

— The measurement object (e.g. measurement vector) itself can be
recycled for different track hypotheses.

* Types of measurements.

— Based on RecoBase/Hit.
* Measurement, prediction, and residual vectors have dimension one.
— Based on RecoBase/SpacePoint.

* Measurement, prediction, and residual vectors have dimension two.

Propagator Classes

* Move track from initial surface to a destination surface.

* Different use cases will probably need different concrete

implementations.

Without errors.
With errors, without noise.
With errors + noise.

With or without magnetic field.

With or without multiple scattering.

With or without energy loss.

Propagator Base Class

!

Concrete Propagator Class

10

Interactor Classes

* C(Calculate propagation noise.

— Multiple scattering.

— Energy loss fluctuations.

Interactor Base

Class

A

Multiple Scattering

Energy Loss Flucuations

11

Persistent Track Class

* Similar to TrackFinder/Track class.

* Should include information about found tracks on one or more
surfaces.

— Track parameters + error matrix.
— Track length.
— Chisquare, status, and track quality information.

— Associated RecoBase objects.

Unidirectional Kalman Fitter

* Basic implementation of Kalman fit builds up a track by
successively adding measurements.

* Track parameters are optimal only at final surface.

13

Bidirectional Kalman Fitter

* Combine information for forward and backward unidirectional

Kalman fits.

Get optimal estimates of track parameters at both endpoints.

Can also get optimal estimates of track parameters at interior
surfaces, if needed (Kalman smoothing).

Can be iterated to improve overall quality by getting better initial
estimates of track parameters at starting surfaces.

14

Using Kalman Filter for Pattern Recognition

 Kalman filter can be used to define a road in which to look for
nearby measurements.

— Road defined by incremental chisquare cut. (Incremental chisquare
can be calculated without updating track parameters.)

* Kalman road when Hits are used as measurements.

— Nearby = surface + drift time.

— Since liquid argon lacks a predefined layer structure, there is
ambiguity regarding which view holds the next hit.

* Seed tracks.

— Kalman filter 1s not self-seeding. Need external seed track
generator.

15

Conclusions

* There 1s probably something to be gained by formalizing
definitions of tracks, surfaces, propagators, and measurements,
and exposing these objects as abstract and concrete classes in
larsoft.

— Such objects mostly don't exist in larsoft now.

* Likewise, it would be nice to have a Kalman filter implemented to
deal with abstract versions of the above objects.

*] believe that a 3D Kalman fit based Hits will work better than one
based on space points.

— Avoids difficult problem of fake space points.

16

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

