PIP-II IT BPG Software Analysis Notes

This document contains a set of notes written while analyzing the PIP-II IT Beam Pattern Generator Labview SW. Since this is my first real (meaning I need to be able to understand it well enough to modify and add to the program) exposure to LabView development as well as this particular application, these notes chronicle my learning journey as well as the actual program itself.

[Note: These notes started as an analysis, but also contain general notes about LabView since I was trying to learn both in parallel.]

The Program:

Function:
The application was written to control the Chase Scientific/WavePond DAx22000 Arbitrary Waveform Generator (AWG) for generation of waveforms to drive the PIP-II 200MHz chopper (kicker). It reads in a .CSV file containing a pattern of 1s and 0s which indicate whether the beam is selected or diverted on a per-bucket basis from the Linac to the booster. These ones and zeros are translated into an AWG waveform: essentially a squarewave pattern with varying on/off time per cycle, where each cycle = 1 162.5MHz (6.153846ns) RF bucket. The .CSV file was apparently generated by a Python script (cannot find this…). In the final production application, the waveform would be generated by a high-level SW application and loaded into the AWG.

The SW does some signal processing on the incoming waveform file to essentially provide a fine delay adjustment. Here is a block diagram of the algorithm (note that this may not exactly match what is in the code as it evolved from when the set of slides a clipped this from were created):

[image:]

The items inside the red box are implemented in Labview. So its basic function is to build the waveform (again, just a squarewave pattern with adjustable edges) from a definition file and add some coarse and fine delay adjustments to it. The incoming waveform definition is first expanded (sampled) into a pulse train at the accelerator RF frequency. Then, it is oversampled at 26GHz (this is all in SW) in order to establish a fine-grained (1/26GHz = 38.46ps) set of samples which allows the delay to be adjusted simply by choosing where we index into the 26GHz sampled waveform array (I think).

Note that the above diagram is confusing in several ways (not sure who originally drew it): It shows two paths (Delay Filter Decimation) which then merge into what seems like one path, and go to the AWG. Similarly, the AWG is shown with only one output. The AWG actually has two channels and I think that this is supposed to express the two channels in the signal path (Q: is there a separate waveform file for each channel? – need to resolve this question).

Driver:
The DAx22000 has a LabView driver built for it and this Application then just connects to those labview driver blocks. The driver was written by a third-party (Acquitek), the owner of Chase Scientific told me over the phone that originally the LabView SW was written be a college student of the summer. There is a detailed manual (DAx_LabView_Driver.docx) provided with the DAx22000 SW.

Notes on AWG:
1) We have a special version: it takes an external clock is in NOT documented (sigh). Had to contact the mfgr wrt functionality and was told that when the unit has the external clock option, the internal clock is not physically connected or is selectable; which was totally confusing because when I tried running the box w/o the external clock, it *still ran*, but with confusing results. So dunno what is connected, but the unit will still produce a DAC output wfm with no external clock, though the waveform looks terrible:
[image:]

2) The AWG’s Labview driver documentation does not match the actual SW: meaning that their blocks contain more ports (usually error I/O) than are documented. I think that you might be able to “see” this in their example LV code, but here we go again with shitty/incomplete documentation. Also, the error message are threaded thru the driver function blocks as a way to force them to run in a specific sequence, which is good.
3) Bb

Correct Version of the BPG LV SW Program (this info comes from one of the people who dev’d it):

200 Ohm Kicker Arb Wave Gen R2.vi

Note that I have copied over (from the Y:/ drive) to:
Z:\wrk\projects\PIP2IT_Chopper\SW\200 Ohm Chopper LabVIEW\Labview 200 Ohm Chopper

Original location was:
Y:\Projects\LLRF\Systems\PIP2IT\Software\200 Ohm Chopper LabVIEW

The LV project file (200 Ohm Chopper Controller.lvproj) contains multiple versions, which is confusing! S

[image:]

The plan is to deploy the program as stand-alone in the field so I’ll need to clean it up and remove the old stuff. To remove from the project (does NOT remove the file from the folder, but does delete from project library), select item > RMB > Remove From Project

Here is the “cleaned up” project:

[image:]

Build LabView Program as Stand-Alone Application:

Note: You need to have an add-on to LV (I currently have LabView 2019, Full Development System) / This does NOT come with the Application Builder add-on. You have to purchase it separately, its $1600. You can verify what you have installed and licensed by going to LV Help > Activate Add-Ons. This will activate the LV License Manager. In this, you will find several options and can find out what add on you have (if any) and activate them. Use the Local License selection: this will give an overview of what’s there. I do not have the Application Builder add-on, but can get an eval license that lasts 45 days (sez that it can be extended). To get the eval license, I needed to put in the serial number since this version of LV is not tied to my LV account (think it was purchased for someone else). The serial number is: M63X39575.

[image:]

Hmmm, looks like this was built already:

Z:\wrk\projects\PIP2IT_Chopper\SW\200 Ohm Chopper LabVIEW\Labview 200 Ohm Chopper\Executable

Assuming that the above is path to build file that the SW makes?

To build the program as a stand alone application:

LV : Project Explorer > Build Specifications > RMB > New: Application (EXE)

(note, after I had activated the Application Builder I tried the above and the only Build selection was for Source Distribution / I had to exit & restart LV in order for the other selections to appear)

This will pop up the “My Application Properties” window. There are many categories that you need to fill out, so we’ll take each one step-by-step.

Setting Up Program to be built to as a stand-alone:

The following screenshots are the settings as I stepped thru everything. Mostly, I have left everything at their defaults, with changes made for providing application-specific items such as the application name, paths, etc.

Labview > Project Explorer > Build Specifications > RMB > New > Application (EXE)

So this creates the <application name>.exe file. In order to actually run it on a windows machine, you also need to install the LabView Run-Time Engine. You can run the Application builder again and create an installer that includes the .exe and Run-Time engine, we’ll do that after we build the .exe.

[image:]

[image:]

[image:]

[image:]

Note that the DaxSerNum.vi is still there, I think that this was built initially to test out and debug things. Not sure the effect of keeping it here.

The next window is the Customize VI Properties pop-up window:
(Left everything at its default here)

[image:]

[image:]
Ran the Icon editor to create the BPG icon:
(create the icon and save it to <name>.ico)

[image:]

[image:]
Un-select “Use default LabVIEW icon file” and navigate to the newly-created .ico file and select it.

Selected Enable Debugging, Generate Build Log File (and specified path to the file)

[image:]

[image:]

[image:]

Added changes as noted below:

[image:]

[image:]

[image:]
[image:]

Changes shown below:
[image:]
[image:]

[image:]

Selected [Generate Preview] to get the results below:
[image:]

· After all of this, click the [Build] button:

[image:]
	

Here’s the output folder:

[image:]
Build logfile output:
[image:]
Next, let’s create the installer SW:
Labview > Project Explorer > Build Specifications > RMB > New > Application (EXE)

[image:]
Destination specifies where the SW will be installed on the target computer:
[image:]

Select BPG_Controller on LHS and click the to place into the destination
[image:]
Leave stuff at defaults:
[image:]

[image:]

Here is where the LV Run-Time engine is added:
[image:]

Leave empty for now:
[image:]
No changes below
[image:]

[image:]

[image:]

[image:]

[image:]
[image:]

Next: Click [Build] and it runs!

[image:]
Didn’t place it where I wanted it!

But here is the window:

[image:]

But the installer is actually located in the Volume directory:

[image:]

· OK, so now we are ready to install it onto my laptop and check things out

Copied entire zipped BPG_executable.zip folder over to my laptop (~126MB)

General LabView Notes:
Labview is a dataflow “language” (though I still think its on the level of a coloring book and crayons…) where each “node” (a node is defined as an object that takes inputs and processes then into outputs) will act on data as soon as that data is available or changes. Multiple, independent nodes can exist on a VI (Virtual Instrument) and all can execute in parallel. Note that the program can be setup so that things can be made to execute sequentially. So this dataflow is also even-driven (e.g. when a VI control changes or some data comes in) so that the code associated with that the event executes when that even occurs. Good programming practice for LV recommends that forcing dataflow via a common thread, which is usually an error checking/handling code.

Dataflow:
The block diagram executes on the flow of data, not from left to right but when data is made available. To force things to happened in a sequence, use a sequence structure (looks like a film strip).

Also, a Node will execute when all of its inputs are available so I think that this carries thru to the Foe Loop: the loop will execute when data is available to all of the node inputs within the loop structure

Code is stored in a <name>.vi file. This contains both the GUI and the block diagram. In the IDE: you create a GUI and then block diagram and can use Ctrl-E to switch between the two.

Help:
Ctrl-H
There is also another control (RMB something?) that give you context help for the item that you are working with. So select the item and type ctrl-H

Displaying Data:
Chart vs Graph:
A Graph displays all the data at once – like dumping the contents of an array to it. This is used OUTSIDE of a While/For Loop

A Chart remembers history and appends new data points to the end of the plot. It is meant to be added to be used *inside* of a While/For Loop where each pass of the loop puts another data point onto the Chart. (think Stripchart)

To plot multiple waveforms use a Bundle function to combine signals from two different Vis. Need to set some parameters up for it, etc.

Sub-Vis:
The same thing as a function or sub-program in regular programming languages. You can put your code into a sub-VI and build a visual ICON for it. Then drag that icon into a new block diagram as needed.

Adding more complex functions not easily done by drawing things:
For implementing formulas, you can add two different types of entities: Formula Node, Mathscript Note – both of these are boxes where you write text code (C-ish code for Formula node, Matlab for Mathscript) and then wire up to them using tunnels in & out of the boxes.
The MathScript (I think) needed a add-on to LV in order to use it.

Loops:
Loop index starts at 0.

 While Loop:
Executes as long as a condition it true. The condition is wired to a stop sign control inside the while loop box. When the condition becomes true (Boolean), the execution stops. In simple examples, a GUI control button is wired to the stop sign so the code inside the loop executes as long as the button is enabled (not stopped).

The boundaries of the loop box are also important and often have loop controls and well as the passing of data (Data is passed though “Tunnels”, which has certain settable parameters – most important are: indexing enabled, indexing disabled: if ena’d, then a one element of the array is passed into the loop at each iteration, if disa’d, then entire array is passed in at initialization / similarly true for array outputs: if ena’d: one element is output at each loop iteration. If disa’d, the entire array is passed out at the *end* of the loop – I think in these cases a shift register tunnel must be used).

A shift register connected to the loop box remembers the data passed in/out and used when passing data in/out of arrays. There is also an “i” increment icon inside the box where you set the loop increment index value and I think also wire up to it to use the increment value for other items inside the loop.

For Loop:
(more complex) Loop has a index count control (N) where you set the # of times the loop runs. Not sure yet how you start the loop? There is a Conditional terminal that can be added which makes the loop execute until condition occurs OR when # of iterations is complete, whichever is first. Also looks like you can set other functions in the loop that make it execute (maybe when data changes/is available?). Can add tunnels to the loop of input & output of data and attach arrays on the outside. The array is then indexed at each pass of the loop. Shift registers are added to the tunnels which are local variables / memory elements that xfer values from one iteration to the next (n-1 data value, and can be changed to n-2, … n-m)

From what I can tell, the For Loop will execute when the N node (# of loop iterations) value changes to something other than zero, so presumably some other process set the N value to make the FOR Loop execute? OR does it execute when there is new data at the input?

Also, a Node will execute when all of its inputs are available so I think that this carries thru to the Foe Loop: the loop will execute when data is available to all of the node inputs within the loop structure. I think that this is what is confusing for me, because it’s a different way of thinking with dataflow.

Case Structure:
A Case Structure is a block that allows certain code to run within it based on the state of variables connected to the Case block. Its similar to switch statements in C or If…Then…Else statements.

So there will be multiple cases, which may have different code in each one that gets executed when a condition in the case list becomes true. At the top of the Case box, there is a pulldown list which is where you set the variables.

Q: how are the selection variables in the Case Structure connected to other program elements (i.e. what sets these values?). A: You wire an input value or selector to the selector terminal of the Case box. The selector can be Boolean, integer or a string. You must specify the default case (e.g. if you specify cases 1,2,3 you have to specify what happens if there is a 4 at the selector terminal). The selector terminal is green with a question mark.

Input & output tunnels can be wired up to case structure. Not every case has to use the inputs, but for outputs, if unused is certain cases, they *must* be wired up to something, otherwise LV will flag it as an error.

Event Structure: (what is used in the BPG application)
An event structure bundles the handling of user interface events (called “notifications”) into one structure and eliminates the need to poll front panel controls. It sleeps until an event occurs, wakes up and executes the event case associated with the event that woke it up. This structure is similar to the Case Structure, except that its event driven.

There are two classes of events: Notify and Filter. A Notify event causes code to react to it. A filter event allows you to change the event’s data as it happens or even discard it. A static filter event captures the event that had been generated before its processed by the code and can decide if it should be processed or not. Example of this would be a “Panel Close” for the user clicking the close.

The event structure is a box to which you can set the desired number of event cases to handle. Each case then becomes a sub-window inside the main block, and the code for event handler is inside the sub-window.

Event cases are created by moving the mouse to the pulldown menu of the event structure, RMB > Add Event Case… Each case is numbered sequentially, starting at zero.

Events are assigned to each case by moving the mouse to the pulldown menu of the event structure, RMB > Edit Events Handled By This Case…

The pop-up menu associated with this then allows you to select which items on the GUI get connected to this case (Event Source) and what the event is (e.g. Key, Value Change, etc.).

[image:]

The above is an example of the Edit Events pop-up window. This particular event connects six different sources to the same event handler. The source is selected from the center pane, and the event for this source in the right-hand pane. The events already specified are in the left-hand pane.

A few notes:
1) The GUI panel locks (default setting, but can be changed, see GUI above) when an event is triggered and stays locked until the event is done executing. So be aware of having handler code that may take a while to run b/c the GUI may look like its frozen.

2) The Event Structure should be enclosed within a While Loop in order to handle multiple events. The While Loop terminates when events can no longer occur. This prevents a deadlock condition where an event happens and the handler runs, only once because there is a while loop separate from the Event Structure that also responds to the change in the control the initiated the event. The handler will not run again to handle a second event, and will lock the GUI b/c its waiting for the event to occur. But it can’t occur because the while loop is waiting for the handler, and even clicking stop in the while loop won’t work. This all seems lame and buggy and a terrible way to do SW, but its probably because I’m not understanding things fully yet.

The LV documentation also suggests to ONLY use a while loop around an event structure and not a case structure, in the latter another deadlock condition can occur.

3) LV begins queueing events when the VI runs or is reserved to run. The event structure handles the queued event when data flow allows the structure to execute. So LV can generate events before the Event Structure is waiting to handle them.

Sequence Structure:
This is a structure that contains several sub-diagrams, or frames that execute in sequential order from Left Right. Pictorially, it looks like a film strip where there is VI code in each frame and that code executes one frame at a time, from left to right in sequence. The code within the frame executes when each node has data ready. The structure can have I/O tunnels as well and in-between frames too. The data leaves each frame when that frame has finished executing.

Here is an example from the BPG code:

[image:]

This is handler code for Event 2: Common Initializations, Bunch Freq, Sampling Freq, Input Segment Size (these are the events It responds to).

Note that sequences can be “stacked”, instead of LeftRight execution, this saves space on the screen. But the behaviour is the same.

The stacked sequence structure has a set of numbers in the top frame, these numbers correspond to the order in which each of the (stacked) frames execute starting from 0…1…2…n

This is the end of the major summary of programming structures. There are a lot more details for each code entity (ports, connections, settings, etc.).

Next, let’s take this one structure above, take it apart and try to understand each piece.

(see visio dwgs with hand-written notes)

LV Programming Concept:

Variables (since even they realize that you can’t wire everything together w/o it looking like spaghetti):

Local Variable:
Instead of wiring, you can place a Local Variable (only visible to that VI) on controls/indicators on the VI (GUI) Front Panel. On a diagram, select the variable to link to and whether its R/W. This is used when you need to pass data between BD nodes and/or if you do not have access to the GUI object.

Then, you link code in the (block) diagram to the GUI via the vaiable.

To create a local var: select the item in GUI (control/indicator) or block diagram RMB > Create Local Variable. LV uses owned labels to connect with the front panel object (i.e. the label (called the “owned label”) given to that object becomes the variable name (I think)).

Global Variable:
Is used to access/pass data between multiple VIs. Its is its own special VI, but has no BD. Connect the GUI control/indicator to the Global Var. The label (called the “owned label”) on the indicator becomes the global variable name.

To add: goto the Functions palette and select, drag & drop onto the GUI of the VI.

Note that these variables *must* be initialized!

(note: GUI = Front Panel in LV-speak)

Sub-VIs:
When you encounter a sub-vi in a BD, and want to see its block diagram, you will need to hold the [Ctrl] key down and dbl-click on the sub-VI in order to pop its BD up in a separate window.

Tabs on the GUI:
In order to select different tabs when in development mode, you need to change the mouse cursor from the arrow (select) to the finger (activate).

BPG SW Analysis

I will analyze the SW by looking at the main event structure and going even by event (for all 23 (sigh)) and analyzing what each event does. Which means that I’ll document all of the pieces and try to follow in sequence (when possible, given LabView’s inherent dataflow structure). Here we go:

Event [0]: Timeout
This is the default event, it executes when no others do and is the first to execute when the program is first ran.
Connects with AWG driver [Count Cards] function:
There is also a Fixed constant CardNum variable value = 1

Seq0: If count cards = 0 / Nested Case Structure = TRUE / Execute Nested Event Structure Seq 0:
This means the AWG is not connected; Error messages are propagated to the GUI (Local Var: Application Status), “AWG Detected” local var is set to False / And the program enters “Simulation Mode” – not sure what this means yet. / “AWGs Detected” GUI indicator value is set with card count # = 0

Seq0: If count cards = 0 / Nested Case Structure = TRUE / Execute Nested Event Structure Seq 1:
Set maim While loop stop = False (so keep running the program, but presumably it is now in Simulation Mode. (how is this signaled to the other parts of the program? – don’t see a local var set…maybe is “AWG Detected”, which is set false)

Seq0: If count cards > 0 / Nested Case Structure = FALSE: Set “AWG Detected” Local var = F (really?) / Set overall When Loop Stop = F

Seq 1: This is where all of the AWG driver setup occurs. The Error code thread is used to force dataflow operation to happen in sequence. Here is what happens:
(Note arrow indicates seq of operations
Count Cards > 0, so AWG is present / Constant value 1 wired into sequence (also wired to “CardNum” variable /GUI item)
Start: Close FCN runs (const 1 wired to it for card num: why not use output of Count Cards fcn….??), probably to ensure AWG is properly closed before opening it / return value updates “Init Close Status” Local Var, GUI item updated
 Open Fcn Runs (opens driver API) / return value Updates “Open Status” Local Var/GUI item
 Init fcn runs (sets up & initializes AWG) / return value updates “Init Status” Local Var/GUI Item
 10MHz (DAx22000_Ext10MHz Fcn runs: selects Ena = 1, which selects external sample clock for our AWG, not 10MHz ext ref since it doesn’t have one, only ext clk) / return value updates “Ext Clk Status” Local Var/GUI Item
 Ext Trig Fcn runs (selects Ext trig = 0 / supposed to be a Boolean according to the docs!, so ext triggering is initially DISabled) / return value updates “Init Ext Trig Status” Local Var/GUI Item
 Mkr 2 Fcn Runs (sets initial Marker 2 position = 0, the start of the wfm, I think) / return value updates “MKR2 Status” Local Var/GUI Item
 Stop Fcn runs (turns off all AWG outputs as part of the initialization) / return value updates “Init Stop Status” Local Var/GUI Item
End of dataflow sequence

Other Items:
Error thread propagates via tunnel to Error Out structure
Application Status txbx on GUI updated with message: “AWG Detected. Please Load Input File”

End of Event 0

Event [1]: “Load File”: Value Change
Event Executes when Load File GUI item changes value. This section of code handles the input of the waveform data from the .CSV file and loads in into an array with the local var name “Input Array”. It also contains some error checking/handling that will look at the file data read in and check if its either 1 or 0, if not it will stop execution and throw an error message up to the GUI’s error field. After file loading and error checking, the next next frame in the flat sequence structure (if no errors) will send a completion message to the GUI “console” window and then send a signal force the “Common Initializations” even to execute next.

In more detail, we will step thru the flat sequence structure, frame-by-frame from left to right.

Frame1:
Only contains the Load File Boolean control for the button, its output is not connected to anything. Maybe this needs to be there in order to start the sequence?

Frame2:
This is where all of the program is. It contains the blocks “Selected File Path” which is wired to the sub-vi Read Delimited Spreadsheet (which is set up with comma as the delimiter, read all rows = yes, date type = Integer. The output of this block is then converted (type cast) into an Int8 data type, and then wired to a Build Array block, this block then stores the read and converted file data into an array which has a local variable name of “Input Array” this local var is then accessed by other items in the program. The build array block has a constant (identified as an “index” by the context help) of 0 wired to a second input terminal which I thought was adding another piece of data (in the form of a constant 0) to concatenate with the input data from the file (the build array Concatenate Inputs option is selected) so I think that each input data element is concatenated with 0 and then stored in the array. Also, and EOF indicator is driven from the Read Delimited Spreadsheet block. There are also two informational local vars (which get pushed up to fields on the GUI) produced: “Input file size” and “Input Array Size”.

After this, a while loop runs which is where the error-checking code is. The while loop iterates over the array size (using the output of an Array Size block) to look at each element stored in the array and compare it against the expected values of 1 or 0, if there is a mismatch the while loop stops and selects the error message (which is displayed in the GUI Application Status Information message console txbx field and also error out field) in the next frame and then sets the main program while loop to stop as well.

Frame 3.
The last frame, as described above, contains a selector for the test message that is send to the GUI info field. If no errors, a different message is sent to the Application Status GUI field. Also in this frame, a value signaling block, which is wired to a true Boolean constant is executed, which forces an event signal to be sent to force the “Common Initializations” event to being executing next.

End of Event 1

[bookmark: _GoBack]

Event [2]: “Common Initializations”, “Bunch Freq”, “Sampling Freq”, “Input Segment Size”: Value Change

Event Executes when any of the above items signal. Contains a flat sequence structure. This section of code does some computations to produce some meta-data parameters for the input data. These parameters are used by other part of the program and some are also reported as values on the GUI. Following the computations, a message is sent to the application status GUI field, and two Events are signaled to force execution next (which happen in pseudo-parallel): Ch1 & Ch2 Reset Iteration and Initializations.

Next, I’ll go frame-by-frame in the flat sequence structure from left right:

Frame 1:
Common Initializations GUI LED block is added here, but its input is not wired to anything – so how will the LED ever get lit? I think its here in order to start the sequence somehow.

Frame 2:
This contains the main section of code, all of the calculations are done here. These calculations are shown below:

Required Iterations (Local Var, GUI field)
= ratio(Input Array Size (Local var, computed) / Input Segment Size (Local Var, input from GUI))

Remaining Input Array Size (Local Var, GUI field)
= remainder(Input Array Size (Local var, computed) / Input Segment Size (Local Var, input from GUI))
(remainder = x-y*floor(x/y))

Bunch Period (Local Var, GUI field)
= 1 / Bunch Freq (Local Var, GUI input value)

Input File Element Period (GUI field)
= Bunch Period (Local Var, GUI field)

Sampling Period (Local Var, GUI Field)
= 1 / Sampling Freq (Local Var, GUI input value)

Decimation Factor (Local Var, GUI Field)
= Sampling Freq (see above) / DAC Freq (Local Var, GUI Input Field)

Waveform Duration (GUI Field)
= Input File Size (Local Var, calc’d in Event[1]) * Bunch Period (see above)

Over Sampling Ratio
= Convert to UINT8(Bunch Period / Sampling Period)

Array of Oversampled One (local var, GUI field)
· Output of Initialize Array block, creates a 1D array of all ones. The size of the array is = value of Over Sampling Ratio / used by code in Event[7], [8]

Frame 3:
A message is sent to the application status GUI field, and two Events are signaled to force execution next (which happen in pseudo-parallel): Ch1 & Ch2 Reset Iteration and Initializations. And the “Processing” LED is turned off here.

End of Event 2

Note for the following events [3]…[16]: These events can be paired (e.g. Event[3],[4]…[5],[6]…) with the code in each pair being the same, one event for each channel. Therefore, we document the code by only analyzing one channel (Ch1) and note that Ch2’s code is the same. Any differences between channels will be clearly noted and described.

Event [3] : “Ch1 Reset Iteration and Initializations”, “Ch1 Delay, “Ch1 Rising Edge Delay”, “Ch1 Falling Edge Advance”, “Ch1 LPF Cutoff Freq”, “Ch1 LPF Order”: Value Change
(Event[4] code for Ch2 is same)

Event Executes when any of the above items signal. Contains a flat sequence structure. This section of code just handles initializing certain Local Variables to set values. These values are either fixed, initialization constants or are computed from GUI inputs and/or Local Var from other sections of the program.

Next, I’ll go frame-by-frame in the flat sequence structure from left right:
This code consists of a flat, sequential frame. We describe it frame-by-frame in the sequence structure from left right:

Frame1:
Contains one Boolean input block which is connected to a GUI LED labeled Ch1 Reset Iteration and Initializations. Probably LED is for debug, but its not connected to anything so how can it be driven? Maybe this is needed in the first frame to start things moving along?

Frame2:
Computes waveform delay values for Ch1 waveform using GUI input settings. Here is what is computed:

Ch1 Delay (real) (does not seem to be used anywhere in the program…maybe artifact from old code?)
= Ch1 Delay (Local Var, GUI Input Field) * Sampling Period (Local Var, computed in Event[2])

Ch1 Falling Edge Advance (real) (only used in this section of code – see below)
= Ch1 Falling Edge Advance (local var, GUI Input Field) * Sampling Period (Local Var, computed in Event[2])

Ch1 Rising Edge Delay (real) (only used in this section of code – see below)
= Ch1 Rising Edge Delay (local var, GUI Input Field) * Sampling Period (Local Var, computed in Event[2])

Ch1 Pulse Width (min possible) (Local Var, GUI Field)
= Bunch Period (Local Var, calc’d in Event[2]) – (Ch1 Falling Edge Advance + Ch1 Rising Edge Delay)

Ch1 Delay Zeros Array (local var, GUI field)
· Output of Initialize Array block, creates a 1D array of all zeros. The size of the array is = value of Ch1 Delay / used by code in Event[7], [8 for Ch2]

Ch1 Falling Edge Advance Zeros Array (local var, GUI field)
· Output of Initialize Array block, creates a 1D array of all zeros. The size of the array is = value of Ch1 Falling Edge Advance / used by code in Event[7], [8 for Ch2]

Ch1 Rising Edge Delay Zeros Array (local var, GUI field)
· Output of Initialize Array block, creates a 1D array of all zeros. The size of the array is = value of Ch1 Rising Edge Delay / used by code in Event[7], [8 for Ch2]

Frame 3:
This frame just sets three items to initial constant values:

Ch1 Running Iteration (Local Var, GUI Field) Set to 0 initially / set later by code in Event[13]

Ch1 Decimated Segment Remaining Length (GUI Field) Set to 0 initially and seems to stay set that value forever since it only connects to the GUI field and isn’t used anywhere else in the code

Ch1 Combined Decimated Segments Initializes a 1D array of 0 elements / set later by code in Event[13]

Frame 4:
A message is sent to the application status GUI field; the next Event is signaled to force execution: Ch1 Segmentation and Scanning, and the “Processing” LED is turned off here.

End of Event [3] / [4]

Event [5] : “Ch1 Segmentation and Scanning”: Value Change
(Event[6] code for Ch2 is same)

Event Executes when the above item signals. Contains a flat sequence structure.

This section of code takes the original input data

Note(JED 9-14-2020) : This is a far as I got before getting too busy with other projects (HWR commissioning, etc.) so this is all we have, but at least it’s a start! The original plan was to setup thru all 23 events and document the code operation and flow. Fortunately, a lot of stuff is repeated 2x since we have two channels so once you figure it out for one channel, you have both.

PIP2-IT BPG SW Analysis Notes	Page 1 of 2	August 2020
image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image1.png

image2.png

image3.png

