A Primer: Productivity 2000 PLCs at FAST
Dean (Chip) Edstrom (13417N), 03/27/2018, updated 09/18/2019

So you have a PLC that you want to connect to ACNET devices…
	Several systems have been developed recently using a series of PLC from Automation Direct called the Productivity 2000. There many other systems, including the 1000 and 3000 series with similar features using the same proprietary development software, available free on the Automation Direct website. There are also many Productivity 2000 systems elsewhere onsite, developed with the varying philosophies of their programmer as there is no concrete standard, but this document specifically outlines the approach taken at FAST to establish a standard for that facility.
	A list of the FAST facility Productivity 2000 PLCs registered with the controls network, active cards, and spare cards are kept in an excel spreadsheet located on the share drive (the file is “PLC Summary.xlsx” at the network location \\Beamssrv1\nmlscrf.bd\Controls\PLC\). These PLCs are as follows:
[image:]
	To get started with a new Productivity 2000 PLC on the controls network, the easiest way is to connect with a crossover ethernet cable and note the hardware (MAC) address, found using the Productivity Suite, available for free download from Automation Direct. Note that the default IP address is 10.10.10.10 for a new Productivity PLC. Register the PLC with this hardware address with the controls network (via the service desk form). Once registration is complete, an IP address, subnet mask, and default gateway are provided from the AD/Controls networking group. These should be set in the PLC CPU using the Productivity software, again via crossover cable. Once this is done, the PLC may be connected to the controls network on a specified network port, and the PLC may be programmed from any PC connected to the controls network.
	Before doing anything else, it is generally a good idea to turn on the word-swap option for Modbus communication if it is not already on. This can be found under File > Project Properties, and the reasons for doing so are explained in detail near the end of this primer (see the ‘important note’ on page 6).

[image:]
Erlang Configuration
	In order to access PLC registers for use as ACNET device readings, settings, or other properties, the new PLC must be added to one of the modbus Erlang front ends (e.g. CLX41E or CLX57E). To do this, notify the Erlang driver manager of the new PLC’s name and IP address, and the manager will add it to the list on one of the front ends, providing the PLC programmer with an OID and the name of the front end. Initialization of the Erlang driver requires a set of local memory blocks.
While specifying a specific initialization configuration for a PLC in the Erlang driver by the user is not necessary, leaving it unspecified by the PLC owner places allocation of blocks up to the discretion of the Erlang driver owner, who will generally apply a standard configuration. This potentially includes blocks that may or may not be used by the typical PLC programmer when Dabbeling ACNET devices to work with it, resulting in CPU cycles and network bandwidth committed to these empty blocks. A typical default initialization block for a new PLC in the Erlang configuration file might appear as follows:
[image:]
In this example, line #1 is a comment referring to the owner of the PLC by and for the Erlang driver owner’s reference. Note that anything on a given line following the percent symbols (%%) are a comment in the configuration file. Line #2 contains the OID (covered in the following section as it relates to ACNET device SSDNs), and specification that Erlang should manage this specifically with the modbus driver. Line #3 is the PLC network name, in this case, the PLC was connected to the controls network and registered as ipi-plc-3.fnal.gov.
	Following these are two sets of square brackets. Contained in this first set (lines 5 to 7) are the allocated memory block and register addresses, and in the second is the sample rate in milliseconds. All memory block declarations will follow the pattern {a,b,c,d,e}, where:
	a = Index. Specifies the block number to be used in ACNET device SSDNs.
b = Unit Identifier. Always zero for Productivity PLCs.
c = Function Code. Declares the register type. 1 = 1-bit write, 2 = 1-bit read, 3 = 16-bit R/W.
d = Starting Address. This is the beginning local address for the block.
e = Number of Registers (125 max). This is the number of registers to map in the PLC.
Blocks may be added by the Erlang manager upon request, with subsequent blocks with starting address in the next available index. For example, if two blocks of 16-bit read/write registers are required for a given PLC, one could request that the Erlang configuration for that PLC include the lines:
…
,{2,0,3,0,125} %% R/W
,{3,0,3,125,125} %% R/W
…
This assumes the index for these two blocks to be 2 and 3 respectively. For more information on the modbus driver in particular, see the AD/Controls Dabbel reference:
https://www-bd.fnal.gov/help_fe/erl-devices/acsys-fe-dev-modbus/modbus_driver.erl.html

Setting PLC Modbus Addresses and Dabbeling ACNET Devices

Connecting to the new PLC CPU through the Productivity Suite, programming will naturally prompt creation of variables (or ‘tags’), which may be assigned various properties, including type and modbus address. Modbus addresses can also be added or changed through the ‘Tag Database’ window under the ‘Edit’ menu of the Productivity Suite. Once at least one PLC variable exists that includes a modbus address has been created and uploaded to the CPU and the CPU has been added to one of the Erlang front ends, an ACNET device may be created to access it either through D80 or through a dabble batch script.
The properties to include in creation of a new ACNET device will vary greatly depending on the purpose and intended function of the device, but each ACNET device property will have an SSDN to tell the Erlang driver how to route the information back and forth between it and the PLC, and in general, the SSDN layout for all ACNET device properties use following scheme:
<aabb/00c0/dddd/eeff>
Where the lower-case letters (a – e) stand for,
aa: Attribute (03, 04, 06) – There are several other potential register types, but most ACNET device I/O can be performed using these three.
03 = 16-bit Integer register read
04 = 16-bit Integer register write
06 = 32-bit float register read/write
bb: PLC OID associated with the Modbus Erlang Driver mentioned in the Erlang Configuration section.
c: Read/Write indicator (0, 1)
0 = Read Only
1 = Write
dddd: PLC write register address (0000 – FFFF). This is only used for a write (c = 1) in the cases of a digital or analog setting. While this is a hex address beginning with an index of 0 in the SSDN, the Productivity 2000 software lists these in decimal-format beginning with an index of 1. To use the full memory space available, additional local reading memory blocks will need to be established (see ‘ee’) Again, note the offset of 1 with the starting address within the PLC.
ee: The memory block index assigned in the Erlang configuration file as described in the Erlang Configuration section above.
ff: Local Data Address (00 – 7C) within the configured Erlang memory block. This, along with the memory block index are used to determine which register address in the PLC to read from. While this is a hex address for the SSDN, the Productivity 2000 software lists these in decimals (1 – 126). Again, note the offset of 1 with the starting address within the PLC.

An example is N:PS, with two consecutive 32-bit float registers 99 and 97 in the PLC (occupying two 16-bit bocks of physical memory each) for ACNET settings and readbacks respectively. In the SSDN, and including the 1-address offset, these are hex values cc = 62 and 60 respectively. The same is true for the digital control and status, which are 16-bit integers with addresses 95 and 96 that correspond to cc = 5E and 5F respectively. See the following screenshots for the complete example. These are taken from the PLC programming application and D80.

[image: C:\Users\edstrom\Desktop\hvexample.png]

[image: C:\Users\edstrom\Desktop\d80-1.png][image: C:\Users\edstrom\Desktop\d80-1.png]
[image: C:\Users\edstrom\Desktop\d80-1.png][image: C:\Users\edstrom\Desktop\d80-1.png]
	
This is by no means the only way of interfacing with a PLC. Though not shown here, individual bits may be transmitted to and from the PLC if desired, using function codes 1 and 2 in the block declarations in the Erlang configuration, which require attributes 01 and 02 respectively in the SSDN declaration. While the Dabbel reference notes that only 32-bit registers can be returned, it was found that the Productivity PLCs are able to return single 16-bit registers using SSDN attributes 03 and 04 as demonstrated above. The 1-bit and 16-bit data types are split within the PLC into different register blocks, the 16-bit registers starting in the 400000 block as shown in the screenshots above.
Also note, tag array types, or a series of tags of identical type with adjacent modbus addresses translates directly to an ACNET array device whereby the entire array may be accessed by adjusting the ‘maximum data size’ in D80. For example, a 10-element array of 32-bit floating point tags, or ten separate 32-bit floating point variables can each be accessed with a single, 10-element ACNET device array. This is done by setting the ‘maximum data size’ on the setting and/or reading properties to 40, since the default data size is 4.
Within the PLC itself, communication is specific to any given instrument connected to it. Some examples include instruments that employ RS232 or RS485 serial communication, which may return a float value that may be shared immediately with ACNET, or a queried response may require significant parsing or conversion (e.g. if the device in question returns a longer number, a number with non-standard formatting, or a longer string that contains the desired response). An example of a specific application of this PLC in communicating over serial connection with a New Focus picomotor controller is discussed in the picomotor primer in the FAST Beam Physics Redmine Documents, but the goal of this document is to provide a consistent controls development philosophy for implementation of these systems.
The most common method of control and readback is either through a voltage level (low/high) by means of digital contacts, or through -10 to 10 V or 4 to 20 mA analog readbacks over the full-scale of the device. This is complicated somewhat by the PLC modules use of ‘counts’ as primary units with the full bit-space for each module. For example, the HV glassman controlled by N:PS accepts a control voltage input of 0-10V, which tells the supply to output 0-60kV through that range. But this is done through a 16-bit, -10 to 10 V setting so, with the highest value for a 16-bit setting from the PLC to is FFFF = 65535, the P2-08DA-2 card that provides the control voltage to the supply will only use half this range. The readback is in this case is twice as fine because 0-10 V through the P2-08AD-2 has the same 16-bit space.
While this final conversion to ‘counts’ could also be done in ACNET, it is not intuitive to use, and so this is done within the PLC. The result is the following order of operations:
· An operator makes a setting change to N:PS.
· This is converted in ACNET from kV to V.
· The Erlang Modbus driver writes the value of the ‘ACNET-In’ float value within ipi-plc-3 for the high voltage supply (myHV_AI) at register address 0x62.
· So long as this is within an acceptable range, it is converted to counts and placed into the ‘Local-Out’ PLC float value (where the full potential output is -10 to 10V, but the valid range by the supply is 0-10V):
myHV_LO = (myHV_AI [V] x 10 [V] / 60000 [V]) x (32767 [cts] / 10 [V])
· The supply changes according to this and changes its readback control voltage to correspond to this, which is sampled into the ‘Local-In’ float value (myHV_LI)
· This is converted from counts to volts in placing it into the ‘ACNET-Out’ float value (myHV_AO, where the full potential input and voltage range for this provided by the supply are both 0 to 10 V):
myHV_AO = (myHV_LI [cts] x 10 [V] / 65535 [cts]) x (60000 [V] / 10 [V])
· The Erlang Modbus driver then reads this from the PLC at Modbus address 0x60 and converts the primary unit data in volts to kV for the common unit readback in N:PS.
All constants above can be condensed into a single conversion factor and are only shown explicitly above for completeness.
	The digital control and readback offers greater flexibility, but also offers the greatest potential pitfalls for development. Each status bit or related set of status bits can potentially be broken out into individual ACNET devices, but this can make using or even finding all the necessary devices more difficult. Using N:PS again as an example, the control is used to coordinate closure of the contactor and HV supply enable. The contactor is physically separate from the HV supply but necessarily closed to allow the HV supply to charge the source and HV controls rack, so arranging the internal PLC logic to coordinate this is beneficial regardless of whether or not the contactor control and status were operated in a separate ACNET device from N:PS, so it made sense to combine them.
The complete control allows the operator to issue an ‘on’, which sets an internal bit within the PLC, telling it to check the door interlock status for the HV rack enclosure. If the door interlocks are closed (good), the contactor will close. Only once the contactor is verified closed will the HV enable be set high, allowing the glassman power supply output. Other functions have been implemented with other control commands, e.g. the contactor can be closed in without enabling the HV with a positive polarity command. These are set in the PLC as a 16-bit integer, where ‘0’ indicates no current command while the others are shown in the set of D80 images above.
Digital status for N:PS is also read back through a 16-bit integer. As seen below, it incorporates more than only status for the glassman, but various other status bits including the PLC status, and whether the extractor power supply is in ‘local’ or ‘remote’ control. If the extractor is in ‘remote’ control, then it will automatically maintain a 5 / 1 voltage ratio with the HV supply to extract the protons from the source but if it is in local these two supplies may be adjusted independently, which is why it appears in this block of status.
[image: C:\Users\edstrom\Desktop\asdf.png]

Important note: for reasons not clear at this point, the word-swapping through the Erlang driver appears to always be performed on half of the data-size. For example, given a 32-bit integer (0 to 4.294e9), the bits can be thought of as two words, or raw 16-bit blocks of binary, ‘AB’, where ‘A’ and ‘B’ can each be a number from [00000000 00000000]=0 to [11111111 11111111]=65535. The driver naturally reads this as ‘BA’, which we resolved above by turning on the word-swap option in the PLC. However, the Erlang driver also apparently does this with 16-bit type tags, which can be considered two raw 8-bit blocks of binary, ‘CD’, where C and D can each be a number from [00000000]=0 to [11111111]=256. In this case the driver naturally reads this as ‘DC’, but the register-, or word-size is 16-bits, and so no swap is performed in the PLC. The result is that the first and last 8-bits will arrive swapped in ACNET.
Fortunately, this really only seems to affect readbacks, and is not too difficult to deal with. Since this primer only employs 16-bit readback for digital status, these blocks of bits (0x0-0x7 and 0x8-0xF) can either simply be understood to be swapped for the status readback, or packed appropriately bit-wise into a 16-bit integer. In the N:PS example above, the latter was chosen and so the ‘On/Off’ status bit is actually placed into bit #8, while the ‘Extractor (N:PSEXT)’ status bit is placed into bit #2 of the digital status ‘ACNET-Out’ integer value within the PLC, ‘myPS_AO_Dig’.
Notes, Tips, & Tricks
A few final rules of thumb to keep in mind when developing PLCs:
· [bookmark: _GoBack]Keep ‘magic numbers’ to a minimum. That is, numbers that unnecessarily restrict full range of control that the knowledgeable operator may want to change in the future. Enforcing 0 kV as a minimum for N:PS is appropriate because the power supply cannot be operated negative, and 50 kV as a maximum is appropriate because running it higher is not only generally undesired, but potentially dangerous. Setting a maximum at some intermediate range, as might be done for a commissioning phase however, should be established through ACNET as it is likely to change over time, perhaps routinely.

· Minimize the number of ACNET devices for any one physical device/instrument by combining analog and digital settings and readbacks into the same overall device where appropriate.

· Digital control should conform to established laboratory standards: 1 = on/closed/error, 0 = off/open/no_error. In general, only the first valid condition here should be used. On/off applies to things like supply control and status, closed/open applies to things like contactors and interlocks, and error/no_error should only be used in terms of a program readback (potentially returned as part of a serial query or network request). While some take a rigid stance that ‘no_error’ should be taken to mean ‘good’ this may lead to ambiguous status readbacks when applied to other things through interpretation.

· Whenever LEDs are used as indicators, the LED status should conform to the ‘1’ status above, unless dual-color LEDs are used, in which case green should represent a status of ‘1’ and red should be used to represent a ‘0’.
image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image1.png

image2.png

image3.png

