- Tasking in OpenMP

Alejandro Duran

’Iorla Supercomputing Center

Outline
Ouitline

0 Why task parallelism?

e The OpenMP tasking model
@ Creating tasks
@ Data scoping
@ Syncronizing tasks
@ Execution model

e Pitfalls & Performance issues

e Conclusions

®

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 2/48

Why task parallelism?

Outline

0 Why task parallelism?

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 3/48

Why task parallelism?

Why task parallelism?

List traversal

void traverse_list (List |)

{

Element o @ Ackward
. @ Very poor
#pragma omp parallel private(e)
for (e = |—>first; e ; e = e—>next) performance
#pragma omp single nowait
Seation @ Not composable

&

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 4/48

Why task parallelism?

Why task parallelism?

Tree traversal

Example

void traverse (Tree xtree)
{
#pragma omp parallel sections
{
#pragma omp section
if (tree—>left)
traverse (tree—>left);
#pragma omp section
if (tree—>right)
traverse (tree—right);

}

process(tree);

}

@ Too many parallel regions
o Extra overheads
e Extra synchronizations
o Not always well
supported

Alejandro Duran (BSC)

Tasking in OpenMP

&

June 3rd 2009 5/48

Why task parallelism?

Task parallelism

@ Better solution for those problems
@ Main addition to OpenMP 3.02

@ Allows to parallelize irregular problems

unbounded loops

@ recursive algorithms

e producer/consumer schemes
(]

@Ayguadé et al., The Design of OpenMP Tasks, IEEE TPDS March 2009

v

®

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 6/48

The OpenMP tasking model

Outline

e The OpenMP tasking model
@ Creating tasks
@ Data scoping
@ Syncronizing tasks
@ Execution model

&

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 7148

The OpenMP tasking model Creating tasks

Outline

e The OpenMP tasking model
@ Creating tasks

&

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 8/48

The OpenMP tasking model Creating tasks

What is an OpenMP task?

@ Tasks are work units which execution may be deferred
e they can also be executed immediately!
@ Tasks are composed of:

@ code to execute
e data environment

@ Initialized at creation time
@ internal control variables (ICVs)

&

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 9/48

The OpenMP tasking model Creating tasks

Task directive

#pragma omp task [clauses]
structured block

@ Each encountering thread creates a task
e Packages code and data environment
@ Highly composable. Can be nested

o inside parallel regions
o inside other tasks
o inside worksharings

®

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 10/48

The OpenMP tasking model Creating tasks

List traversal

with tasks

Example

void traverse_list (List |)
{
Element e;
for (e = |—>first; e ; e = e—>next)
#pragma omp task
process(e);

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 11/48

The OpenMP tasking model Creating tasks

List traversal

with tasks

Example

void traverse_list (List |)

{
Element e;
for (e = |—>first; e ; e = e—>next)
#pragma omp task
} process(e); <—[What is the scope of e?]

&

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 11/48

The OpenMP tasking model Data scoping

Outline

e The OpenMP tasking model

@ Data scoping

&

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 12/48

The OpenMP tasking model Data scoping

Task data scoping

Data scoping clauses

@ shared(list)
@ private(list)
o firstprivate(list)
o data is captured at creation
@ default(shared|none)

®

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 13/48

The OpenMP tasking model Data scoping

Task data scoping

When there are no clauses ...

@ Implicit rules apply
@ e.g., global variables are shared
@ Otherwise...

o firstprivate
e shared attributed is lexically inherited

Alejandro Duran (BSC) Tasking in OpenMP

June 3rd 2009

&

14 /48

The OpenMP tasking model Data scoping

Task data scoping

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)

int d;
#pragma omp task

{

int e;

H} @

v

®© Q0 T
| | N [|

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 15/48

The OpenMP tasking model Data scoping

Task data scoping

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)

int d;
#pragma omp task

{

int e;

shared

H} @

v

®© Q0 T
| | N [|

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 15/48

The OpenMP tasking model Data scoping

Task data scoping

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)

int d;
#pragma omp task

{

int e;

shared
firstprivate

H} @

v

®© Q0 T
| | N [|

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 15/48

The OpenMP tasking model Data scoping

Task data scoping

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)

int d;
#pragma omp task

{

int e;

shared
firstprivate
shared

H} @

v

®© Q0 T
| | N [|

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 15/48

The OpenMP tasking model Data scoping

Task data scoping

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)

int d;
#pragma omp task

{

int e;

shared
firstprivate
shared

firstprivate @
1

v

®© Q0 T
| | N [|

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 15/48

The OpenMP tasking model Data scoping

Task data scoping

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)

int d;
#pragma omp task
{
int e;
a = shared
b = firstprivate
¢ = shared
d = firstprivate
e = private
1

v

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 15/48

The OpenMP tasking model Data scoping

Task data scoping

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)

int d;

#pragma omp task default(none) is your friend
{ int o @ Use it if you do not see
’ it clear

a = shared

b = firstprivate

¢ = shared

d =

e =

firstprivate
private @
11}

v

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 15/48

The OpenMP tasking model Data scoping

List traversal

Example

void traverse_list (List |)
{

Element e;

for (e = |—>first; e = e—>next)
#pragma omp tas

process (4—[6 is flrstprlvate]

&

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 16/48

The OpenMP tasking model Data scoping

List traversal

Example

void traverse_list (List |)
{
Element e;
for (e = |—>first; e ; e = e—>next)
#pragma omp task
process(e);

| \

—[how we can guarantee here that the traversal is finished?}—”

Alejandro Duran (BSC) Tasking in OpenMP

June 3rd 2009

&

16/48

The OpenMP tasking model Syncronizing tasks

Outline

e The OpenMP tasking model

@ Syncronizing tasks

&

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 17748

The OpenMP tasking model Syncronizing tasks

Task synchronization

@ Barriers (implicit or explicit)
o All tasks created by any thread of the current team are guaranteed
to be completed at barrier exit

@ Task barrier

#pragma omp taskwait

e Encountering task suspends until child tasks complete
@ Only direct childs not descendants!

®

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 18/48

The OpenMP tasking model Syncronizing tasks

List traversal

Example

void traverse_list (List |)

{

Element e;
for (e = |—>first; e ; e = e—>next)
#pragma omp task
process(e);

#pragma omp taskwait

<—[AII tasks guaranteed to be completed here)
}

v

@

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 19/48

The OpenMP tasking model Execution model

Outline

e The OpenMP tasking model

@ Execution model

&

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 20/48

The OpenMP tasking model Execution model

Task execution model

@ Task are executed by a thread of the team that generated it
o Can be executed immediately by the same thread that creates it

@ Parallel regions in 3.0 create tasks!
o One implicit task is created for each thread
@ So all task-concepts have sense inside the parallel region

@ Threads can suspend the execution of a task and start/resume

another

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 21/48

The OpenMP tasking model Execution model

List traversal

List |

#pragma omp parallel
traverse_list(1);

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 22/48

The OpenMP tasking model Execution model

List traversal

List |

Multiple traversals of the same
#pragma omp parallel list

traverse_list(1);

&

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 22/48

The OpenMP tasking model Execution model

List traversal

Single traversal

Single traversal

List | @ One thread enters single
and creates all tasks
#pragma omp parallel
#pragma omp single @ All the team cooperates
traverse_list(1); executing them

&

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 23/48

The OpenMP tasking model Execution model

List traversal

Multiple traversals

Multiple traversals

List I[N]

#pragma omp parallel

#pragma omp for

for (i = 0; i < N; i++)
traverse_list(I[i]);

@ Multiple threads create
tasks

@ All the team cooperates
executing them

Alejandro Duran (BSC)

e

Tasking in OpenMP June 3rd 2009 24/48

The OpenMP tasking model Execution model

Task scheduling

@ Tasks are tied by default

o Tied tasks are executed always by the same thread
o Tied tasks have scheduling restrictions

@ Deterministic scheduling points (creation, synchronization, ...)
@ Another constraint to avoid deadlock problems

o Tied tasks may run into performance problems
@ Programmer can use untied clause to lift all restrictions
o Note: Mix very carefully with threadprivate, critical and thread-ids

v

®

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 25/48

The OpenMP tasking model Execution model

And last...

The IF clause

@ If the the expression of a if clause evaluates to false

e The encountering task is suspended
e The new task is executed immediately
@ with its own data environment
o different task with respect to synchronization
o The parent task resumes when the task finishes
o Allows implementations to optimize task creation

&

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 26 /48

Pitfalls & Performance issues

Outline

e Pitfalls & Performance issues

e

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 27/48

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool xstate)
int i,res;

it (n==1j) {
/% good solution, count it =/
solutions ++;
return;

}
/% try each possible solutionx/

for (i = 0; i < n; i++)

state[j] = i;

if (ok(j+1,state)) {
search(n,j+1,state);

}

}

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 28/48

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool xstate)
int i,res;
it (n==1j) {

/% good solution, count it =/
solutions ++;

return;
}
/% try each possible solutionx/
for (i = 0; i < n; i++)

#pragma omp task
state[j] = i;
if (ok(j+1,state)) {
search(n,j+1,state);
}

}

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 28/48

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool xstate)

int i,res;

it (n==1j) {
/* good solution,
solutions ++;
return;

}

/% try each possible solutionx/
for (i = 0; i < n; i++)
#pragma omp task

count it =/

state[j] = i;
if (ok(j+1,state)) {
search(n,j+1,state);
}
}

Alejandro Duran (BSC)

Tasking in OpenMP

Data scoping

Because it’s an orphaned
task all variables are
firstprivate

28/48

June 3rd 2009

Pitfalls & Performance issues

Search problem

void search (int n,
int i,res;

if (n==1]) {
/* good solution,
solutions ++;
return;

}

/% try each possible solutionx/
for (i = 0; i < n; i++)
#pragma omp task

count it x/

state[j] = i;
if (ok(j+1,state)) {
search(n,j+1,state);
}
}
}

int j, bool xstate)

Alejandro Duran (BSC)

Tasking in OpenMP

Because it’s an orphaned
task all variables are
firstprivate

v

State is not captured

Just the pointer is captured
not the pointed data

y

&

28/48

June 3rd 2009

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool xstate)

int i,res;

if (n==1j) { .
/% good solution, count it =/
solutions ++;

return;
) Incorrectly capturing
for {1 2250 pozsitle sptutton pointed data

#pragma omp task
state[j] = i;
if (ok(j+1,state)) {
search(n,j+1,state);
}

}
}
v

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 28/48

Pitfalls & Performance issues

Pitfall #1

Incorrectly capturing pointed data

Problem
firstprivate does not allow to capture data through pointers

@ Capture it manually
© Copy it to an array and capture the array with firstprivate

®

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 29/48

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool xstate)
{
int i,res;
it (n==j) {
/% good solution, count it */
solutions ++;
return;
}
/+ try each possible solution x/
for (i = 0; i < n; i++)
#pragma omp task
bool xnew_state = alloca(sizeof(bool)*n);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {
search(n,j+1,new_state);
}
}
}
v

Tasking in OpenMP June 3rd 2009 30/48

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool xstate)
{
int i,res;
it (n==1j) {
/% good solution, count it */
solutions ++;
return;
}
/* try each possible solutionx/
for (i = 0; i < n; i++)
#pragma omp task
bool xnew_state = alloca(sizeof(bool)*n);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {
search(n,j+1,new_state);
}
}
}

Alejandro Duran (BSC) Tasking in OpenMP

Will new_state still be valid
by the time memcpy is
executed?

June 3rd 2009 30/48

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool xstate)
{
int i,res;
it (n==1j) {
/% good solution, count it */
solutions ++;
return;
}
/+ try each possible solution x/
for (1 o 0r | e 1es) Data can go out of scope!
#pragma omp task
bool xnew_state = alloca(sizeof(bool)*n);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {
search(n,j+1,new_state);
}
}
}

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 30/48

Pitfalls & Performance issues

Pitfall #2

Out-of-scope data

Stack-allocated parent data can become invalid before being used by

child tasks
@ Only if not captured with firstprivate

@ Use firstprivate when possible

© Allocate it in the heap
o Not always easy (we also need to free it)

© Put additional synchronizations
e May reduce the available parallelism

v

A\

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 31/48

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool xstate)

int i,res;

if (n==j)
/% good solution, count it =*/
solutions++;

return;
}
/% try each possible solutionx/
for (i = 0; i < n; i++)

#pragma omp task

bool xnew_state = alloca(sizeof(bool)*n);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {
search(n,j+1,new_state);
}
}

#pragma omp taskwait

v

Tasking in OpenMP June 3rd 2009 32/48

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool xstate)

int i,res;

it (n==j)
/% good solution , a
solutions v+ Shared variable needs protected access}
return;

}

/% try each possible solutionx/
for (i = 0; i < n; i++)
#pragma omp task

bool xnew_state = alloca(sizeof(bool)*n);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {
search(n,j+1,new_state);
}
}

#pragma omp taskwait

v

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 32/48

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool xstate)
int i,res;
i (n == 1) { Solutions
/% d lution , toit */ ey
wltoneses @ Use omp critical
return; 5
} @ Use omp atomic
/% try each possible solutionx/ @ Use a reduction
for (i = 0; i < n; i++) 0
#pragma omp task operatlon
{ R
bool xnew_state = alloca(sizeof(bool)*n); @ Not available for 3.0
i f | H
r::wip;);;?:\[mjf]stjt? ;state ,sizeof(bool)xn) A Can be WOI’k out
if (ok(j+1,new_state)) {
search(n,j+1,new_state); manua”y J
}
}
#pragma omp taskwait @
}
v

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 32/48

Pitfalls & Performance issues

Reductions for tasks

int solutions=0;
int mysolutions=0; <—H(Use a separate counter for each thread}

#pragma omp threadprivate (

void start_search ()
#pragma omp parallel
{ #pragma omp single
bool initial_state([n];

search(n,0,initial_state);

}
#pragma omp critical
solutions += mysolutions ; <—[Accumu|ate them at the end)

J @

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 33/48

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool xstate)

int i,res;

if (n==j) {
/% good solution, count it =*/
solutions ++;

return;
}
/% try each possible solution*/
for (i = 0; i < n; i++)

#pragma omp task

bool xnew_state = alloca(sizeof(bool)*n);
memcpy (new_state , state , sizeof (p=—*

new state[j] = i; Pruning mechanism potentially
if (ok(j+1,new_state)) . . .
) search(n, j+1,new_state); introduces imbalance in the tree

}

#pragma omp taskwait

v

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 34 /48

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool xstate)
int i,res;
if (n==1j)

/% good solution, count it =*/
solutions ++;

e Untied clause

/% try each possible solution*/ o A”OWS the

f i =0; i <n; i++ o .

#::ag(nlla orgp tlasknunt:ed) |mp|ementat|0n to
easier load balance

bool xnew_state = alloca(sizeof(bool)*n);

memcpy (new_state , state , sizeof (bool)xn);

new_state[j] = i;

if (ok(j+1,new_state)){
search(n,j+1,new_state);

}

}

#pragma omp taskwait

v

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 34 /48

Pitfalls & Performance issues

Benefit of untied?

T
m—tied tasks
untied tasks

@ Don’t expect much
today.

@ But, as
implementations are
optimized differences
may arise

with Intel’s icc v11.0 (

June 3rd 2009 35/48

Speed-up

Alejandro Duran (BSC) Tasking in OpenMP

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool xstate)

int i,res;

o
I /*(ngoodj)solution, - . . .
el o s Because of untied this is not safe!)

}

/% try each possible solutionx/
for (i = 0; i < n; i++)
#pragma omp task untied

bool xnew_state = alloca(sizeof(bool)*n);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {
search(n,j+1,new_state);
}
}

#pragma omp taskwait

v

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 36/48

Pitfalls & Performance issues

Pitfall #3

Unsafe use of untied tasks

Problem

Because tasks can migrate between threads at any point
thread-centric constructs can yield unexpected results

| A\

Remember

When using untied tasks avoid:
@ Threadprivate variables
@ Any thread-id uses

And be very careful with:

@ Critical regions (and locks)

§

Simple solution
Create a task tied region with #pragma omp task if(0)

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 37/48

Pitfalls & Performance issues

Search problem

void search (int n, int j, bool =xstate)

int i,res;

it (n==1j) {
/% good solution, count it =*/

#pragma omp task if (0) (N N N
CIIoNE:5; { Now this statement is tied and safe)
; 5
/% try each possible solutionx/
for (i = 0; i < n; i++)

#pragma omp task untied
{

bool xnew_state = alloca(sizeof(bool)*n);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {
search(n, j+1,new_state);
}
}

#pragma omp taskwait

v

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 38/48

Pitfalls & Performance issues
Task granularity

Granularity is a key performance factor

@ Tasks tend to be fine-grained
@ Try to “group” tasks together
o Use if clause or manual transformations

®

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 39/48

Pitfalls & Performance issues

Using the if clause

void search (int n, int j, bool xstate, intdepth)

int i,res;

if (n==1j) {
/% good solution, count it =*/
#pragma omp task if (0)
mysolutions ++;
return;

}

/% try each possible solution*/

for (i = 0; i < n; i++)
#pragma omp task untied if(depth < MAX_DEPTH)
{

bool xnew_state = alloca(sizeof(bool)xn);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {

search(n, j+1,new_state,depth+1);

}

#pragma omp taskwait

v

Tasking in OpenMP June 3rd 2009 40/ 48

Pitfalls & Performance issues

Using an if statement

void search (int n, int j, bool xstate, intdepth)

int i,res;

it (n==1j) {
/% good solution, count it =*/
#pragma omp task if (0)
mysolutions ++;

return;
}
/% try each possible solutionx/
for (i = 0; i < n; i++)

#pragma omp task untied

bool xnew_state = alloca(sizeof(bool)*n);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {
if (depth < MAX_DEPTH)
search(n, j+1,new_state,depth+1);
else
search_serial(n,j+1,new_state);
}

#pragma omp taskwait

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 41/48

Pitfalls & Performance issues

If clause vs If statement

30 :

s nothing
if clause
manual if

@ If clause
reduces
overheads

15 1 e without

modifying

10 . the code

@ but if granularity

) I | is very small is

ol et e W || not enough

1 2 4 8 16 32 V.

Speed-up

nf thraade

with Intel’s icc v11.0 @

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 42 /48

Pitfalls & Performance issues

Don’t abuse tasks

Sealability of Iterator loops

Tasks are nice but... I /

@ They are not the answer to
everything

e They are more costly than 5
other OpenMP mechanisms | ¢

@ Use other OpenMP constructs

i tasking (13): 3.3e-07 ze2 —t
when appropriate L
o Particularly for/do ! - ol 5 i
worksharing and sections Crurkstze

v
Courtesy of Christian Terboven

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 43 /48

Conclusions

Outline

e Conclusions

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 44/ 48

Conclusions

Summary

Tasks in 3.0

@ #pragma omp task [clauses] creates a task
o sharedfirstprivate,private data clauses
o firstprivate is usually the default (but shared inherited)
o untied allows tasks to move between threads
o if allows to dynamically control task creation

@ #pragma omp taskwait waits for children completation

®

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 45/ 48

Conclusions
Summary

Pitfalls & tips

@ Use default(none) if unsure of data scoping
© Careful when using firstprivate on pointers
© Careful with Out-of-scope data

@ Use untied tasks carefully

© Control granularity

© Do not abuse of tasks

®

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 46/ 48

Tasks after 3.0

@ Support for task reductions
@ Task dependences
@ Scheduling hints

®

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 47/ 48

Conclusions

Thanks for your attention!

&

Alejandro Duran (BSC) Tasking in OpenMP June 3rd 2009 48 /48

	Outline
	Why task parallelism?
	The OpenMP tasking model
	Creating tasks
	Data scoping
	Syncronizing tasks
	Execution model

	Pitfalls & Performance issues
	Conclusions

