
C3PO

Bernhard W. Adams, June 27, 2019

I. INTRODUCTION

C3PO (Control Code Collection for Process Organization) is a set of inter-process communication standards for
interfacing industrial-control devices to users. It is implemented as a collection of programs, tied together by a
PostgreSQL database. This is a highly modular approach; each of the programs can be written in just about any
programming language (python being used at this time), and a good part of the functionality of C3PO is not found
anywhere in program code, but rather in the database entries (defined through setup files) that tie the programs
together. Component programs interface with each other through operating-system calls or through TCP sockets
using secure-socket-layer communication. Multiple users can access C3PO at the same time, with conflicting access
being regulated through database locks. Furthermore, C3PO can be distributed among several computers, as long
as they are on a network to allow TCP/IP communication amongst them.

The database need not be accessed directly by the end user, but it may be helpful to peek into it for debugging
purposes. C3PO isolates the end user(s) from the gory details of bit-flipping, and other highly hardware-specific
tasks. These are outsourced to driver routines that need to be supplied for each hardware device used in an
experiment. The end user(s) can then concentrate on the real tasks of moving actuators, setting temperatures,
reading sensors, etc.

Experiment control can be abstracted as 1) converting real-world items of interest to data (numeric, string, image,
etc.), 2) processing the data in a program, and 3) converting data to a real-world effect. A good approach is to
discriminate between hardware-abstraction layers where the lowest ones provide direct interface with the hardware,
intermediate ones handle standard tasks, such as scanning, and the uppermost ones are the user interface, which
presents itself to the experiment in terms of functionality, as opposed to specific devices. For example, the end
user wants to move something by some amount of millimeters without regard to the specific vendor, or wants to
measure a voltage with whichever instrument is on the experiment. C3PO presents the instrumentation in this
functional form.

On top of that, the experimenter can build scripts that control the experiment, or make use of built-in standard
features, such as multi-dimensional scans. The interface between the low-level drivers and the lowest hardware-
abstracted software needs to be standardized, yet flexible. In C3PO, the real world is abstracted though process
variables (PVs). Data formats of PVs can be numeric, string, or vectors or matrices of these. Figure 1 shows a
schematic representation of the role of C3PO code in an experiment providing multiple users with access to multiple
instruments to control, measure, perform scans, etc.

device A

device Buser 2

user 1 PVs

PVs

device
drivers in

te
rfa

c
e
s

OS
call

C3PO

database

internal:
scan, calc

device O

FIG. 1: Schematic representation of the role of C3PO code as an interpreter between user(s) and devices in an experimental
setup. Users write to and read from PVs. These are resolved internally in C3PO to call up appropriate device drivers or
C3PO-internal functions (scans, user calculations, etc.), and/or access database entries. Device drivers communicate with
instruments (actuators, measurement devices, etc.) through OS calls or interface drivers. See text for more detail.

2

On the right-hand side in the figure are several devices, which might be voltmeters, power supplies, actuator
controllers, oscilloscopes, etc. Each device has its own command protocol and one or more communicaiton interfaces.
To the user(s), the devices are abstracted as PVs to write to (ex. actuator position) or read from (ex. voltage). The
C3PO code contains drivers that translate PVs into commands for the devices, as well as interface drivers that route
these commands and the replies through specific interfaces (serial ports, TCP/IP, USB, etc.). For reconfiguring
the interfaces through which a device communicates with the control computer some database entries need to be
modified, but the user need not be aware of any such change.

When a PV is used (written to or read form), the lowest-level HA program looks up the PV name in the database
to find the following information:

• name of the driver program, as known to the OS command line

• type: read/write

• optional side effect: the name of an OS-command-line program that may do other things. This may sound
rather harmless at first, but it may be used to ensure database consistency (see below), or for advanced
operations, such as sending an email message if a motor is moved, or measured value exceeds a threshold.
Side effecets are handled by the PV gateway program pva.py

As far as the end user is concerned, there are only two types of PVs: those that one writes to and those that
one reads from. Internally, i.e., not visible to the end user, there are more types, which are discussed in Sec. II.
A PV name can be any string not starting with the asterisk (see below). Typically, PV names are structured as
<instrument name>.<function>, for example k2410.rcurr to read a current from a Keithley 2410 picoammeter.
However, that is only a convention used in the current implementation, and not a necessity.

C3PO will store in its database the last value read from a read-type PV and the last value written to a write-type
one. Reading from a PV with an asterisk pre-pended to its name will not actually access the respective instrument,
but will rather return that last-read/written value. This is the only case where a write-type PV can be read from.
In all other cases read and write types are distinct from each other, even if they may have the same name (this
may seem to be a semantic distinction here, but it will become important later on).

Drivers are command-line executable programs. However, users should access drivers only through the HA layer
structure of C3PO, and never directly. A driver program must accept at least one argument that tells it what to
do, as well as additional optional arguments that depend on the requested function. All drivers must support the
functions listed in Table. ??.

The approach of casting an experiment into a collection of PVs is intentionally constraining, so that a clear
structure is available. One might think of the PV structure as the skeleton of the experiment. There are, however,
many situations where a more free-style scripting approach is convenient. There are several places in the PV
structure where this is possible, and this might be called putting flesh on the skeleton. At the highest HA levels, a
user will simply write python scripts that do calculations and other complex operations before even calling a core
C3PO script to use the PV structure. There is also a way of calling a python script, or any other program that can
be started from the command line: The standard installation includes a scripting PV and a driver associated with
it. More scripting PVs using that driver can be defined by the user. When a value is written to a scripting PV,
then a command-line program is called with parameters that can be defined as described in Sec. II, and a return
value is also provided through a PV.

C3PO can run in one of three modes:

• normal: actuators move, detectors are read, etc.

• read-only: no actuators move, but detectors are triggered and are read after the prescribed wait times

• full-simulation: no actuators move, and no detectors are triggered or read

Data files will be written to in all three modes.
Several users may simultaneously access C3PO, and multiple experiments can be controlled simultaneously by one

installation of C3PO. Normally, users would write to (directly or within a scan) disjunct sets of devices. However,
for cases where two users may want to write to the same PV, a database-lock mechanism prevents confusion. The
way that this works is that each time a PV is to be written to,, C3PO first ‘checks it out’ of the database and
outs a lock on it, which it returns only after the transaction is completed. If the PV is already locked, C3PO will
wait. These locks, henceforth called “C3PO lock” are database entries and are quite distinct from the locks that
the database itself uses to synchronize transactions. In the case of a program crash, locks may be left un-returned,
i.e. the database would still contain an entry for a checked-out lock. In order to clear such “stale locks”, one may
issue an explicit command to clear a lock on a specific PV, or all of them.

3

II. USAGE

At this time, C3PO is mainly accessed through the command line of the OS (preferably Linux), but a graphical
user interface (GUI) is under development.

A. Command-Line Interface

The two most important functions on the command-line interface are wpv (write to a PV) and rpv (read from
a PV). They are currently implemented in python, but may be written in some other language, as well. These
functions are found in the “user” subdirectory of the C3PO installation path. To write to a PV (here using the using
the python version on a UNIX system), type ./wpv.py <PV name> <value>, for example ./wpv.py xtr.mvabs
10 to move a motor “xtr” to an absolute position of 10 units (mm or whatever). NB: The base name “xtr” of the
PV, its extension “mvabs”, or even the structure of abse and extension, are all site dependent, and so is the choice
of mm as units. To read from a PV, type ./rpv.py <PV name>. Here are some typical examples:

command meaning comment

./wpv.py xtr.mvabs 10 move xtr to the position of 10

./rpv.py xtr.mposn read current position of actuator xtr

./rpv.py Xtr.mposn read current position of actuator Xtr not the same as xtr

./wpv.py scanD2.Trg 1 trigger scan “D2” outer loop of a 2d scan, see Sec. II C

TABLE I:

B. GUI

C. Scans

Scanning, i.e., systematically changing one or more actuator positions, or voltages, temperature, etc., and taking
measurements at each point, is one of the most important functions of an experiment-control program. Colloquially,
“scan” may refer to both the actual process of scan execution, but also to the type of scan (linear vs. table scan,
or which dimension in a multi-dimensional scan). In cases below where there may be doubt. the usage will be
clarified.

In C3PO, scan parameters (which actuators to move and how which detectors to read, etc.) are contained in the
master database, from which the scan driver reads them during scan execution. Values for these scan parameters
are sent to the database by writing to pertinent PVs. This is usually handled by editing a text file, and then calling
a program to handle all the writing of PVs. The set of all PVs associated with a scan is called the scan-PV set.
Several such sets are pre-defined in C3PO in such a way that the associations between them are already defined.[1]
Once all scan parameters are defined, the scan is started by writing a value of 1 to a scan-trigger PV, such as in
./wpv.py scanD2.Trg 1.

Each of the scan-PV sets has the same kind of associations within it, and there are none cross-linking the sets.
In particular, there is nothing in C3PO itself that would designate a scan-PV set as representing a particular
dimension for a multidimensional scan. Rather, multi-dimensional scans, even those of non-integer dimensionality,
are set-up by the user by writing a scan-trigger PV to a place in the scan-definition file (the contents of which go
to respective PVs in the scan-PV set) where-ever a write-type PV can go, such as places for actuators, detector
triggers, etc. This is similar to LEGO bricks in that a set of scan PVs is analogous to a brick, and bricks can be
assembled in all kinds of multi-dimensional structures.

Two types of scans are pre-defined through their sets of scan PVs: linear scans and table scans. In a linear scan,
one or more actuators are moved (or set in the case of a voltage, or temperature, etc.) in a sequence of steps, and
zero or more detectors are read in each of them. The steps are given as a linear progression of parameter values
beween two endpoints. This may be as simple as stepping through equidistant positional values of an actuator,
or more subtle such as stepping through equidistant angles, which translate non-linearly into actuator positions.
In any case, a linear scan consists of a progression through a given number of steps, where something happens
in each step. If that something contains the triggering of another scan[2], then one gets a multi-dimensional
scan. Additionally, there are a “before” and an “after” section in a linear scan, which serve for initialization and

4

“mop-up”. Other scans may also be triggered in those sections. There is a lot more detail on linear scans in Sec.
II.

Another type of scan is the “table scan” where parameter values for actuators are not stepped linearly, but are
rather read from a file. Actually, the linear scan internally generates a table (and exports it to a file for debugging
purposes). Thus, internally, a scan is always run as a table scan.

Finally, even though technically not a scan, a C3PO script can also be used to step through a sequence of
positions, etc., and take measurements in each.

1. Linear Scans

A linear scan is one where one or more parameters are stepped linearly through a succession of values, which
become, in some linear or non-linear way, actuator values.

extension meaning

Before ;-separated list of wPVs and values or variable assignments to initialize scan

TimeInterval minimum time to wait after completion of move until next

Actuators ;-separated list of write PVs: actuator names

ActWait ;-separated list of read-type PVs to ask if actuators are done moving; same length as Actuators

ActSettle list of actuator settling times

ActFrom

ActTo

Npoints one integer N : number of scan points; $I = 0. . .N − 1

Safety list of ;-separated expressions returning bool: proceed only if all are true

MeasurePrep

DetTrg

DetTrv ???

DetWait

DetRdTrg

DetRead

AbortList

After

TABLE II: Summary of scan-setup PVs formed by taking the scan base name and appending the extension in the first
column, above, i.e., if scan is the basename, the first row would expand to the PV scan.Before

In the Before section, variables with names $A .. $Z can be assigned values from rPVs
Here is some more detail on the setup PVs. In order to define the exact syntax, the regex used by the scan driver

Scan.py is given in some cases. The semicolon is used to separate list items using the regex \s*;\s+

• Before: a list of semicolon-separated items. Each item can be either a space-separated pair of <wPV name>
<value>, or a set of (<variable name> <assignment operator <-> <rPV>) recognized by the regex ^\s*\
$[A-Z]\s*<\-\s*\S+.*$,where $A .. $Z are possible variable names, except reserved names $I and $L. The
purpose of the latter is to make the scan parametrically dependent on the reading of a PV. This may be
some outcome of a measurement in the experimental setup, or a RW PV by which another part of C3PO can
broadcast information. For example, an outer-loop scan can transmit its scan index to an inner-loop scan
using this RW-PV mechanism. The reserved variables are assigned values in each scan point: $I= 0. . .N − 1
is the index of the scan point where N is given in Npoints, and $L is, depending on which ;-separated column
it is in, the interpolated position betwen the respective actuator’s from and to values

• Actuators: a list of semicolon-separated items that are either wPVs or space separated pairs of a wPV and
an expression that can be evaluated to a number or a string.

• ActWait: a list of semicolon-separated rPVs. The scan will wait after moving actuators until all these rPVs
give a non-zero reading. Empty list items or ones commented out with a pair of parentheses will be ignored

5

III. STRUCTURE

C3PO is structured in hardware-abstraction (HA) layers, with lower-level, system-internal and hardware-specific
(HA:-1 and lower), and higher-level user (HA:1 and higher) routines. Between these two sets (HA:> 0 and HA:< 0)
lies HA:0 represented by a single gateway routine, pva.py (PV access), through which all communication between
the user and C3PO goes. Similarly, all communication between C3PO and the devices passes through a single
interface-gateway routine called intAcc, which handles selection of the proper interface for a requested device.
HA:< 0 routines are not accessed directly by the user, and no knowledge of them is required to use C3PO. The
parts of C3PO are tied together by a postgrsql database, which is set-up individually for a given experimental setup
(in a largely automatic process described in Sec. II). The structure of C3PO is shown graphically in Fig. 2. All the
end user needs to know is then how to interface with the pva gateway, and all the person setting up the experiment
(the “installer”) needs to know is how to specify interfaces for the intAcc gateway. All other parts of C3PO need
to be understood only by code developers. The figure shows how communication between i) a multiplicity of user

pva

pvname −> driver

pvname −> DSDTpvs:

pvs:

alias:

Database:

intAcc handler
int.command

data

int. (alias)

command

data

single
gateway

multiple
device
drivers

multiple
user
programs

single

gateway

multiple
interface types

scan, etc.
drivers,

HA:0 HA:−1 HA:−3HA:−2HA(>=0)

pvw, pvr

user scripts

[alias −> pvname] DSDT:

DSDT:

pvname −> int. alias

other device detail int. alias −> int.interfaces:

deviceuser

FIG. 2: Graphical representation of the structure of C3PO.

programs and ii) a multiplicity of devices connected to the computer by iii) a multiplicity of interface types is
channeled through two gateways where the flow of information is guided by entries in the database. This makes
it easy to set-up an experiment: provided the device drivers and interface handlers exist (as code snippets), then
the person setting up an experiment only needs to generate database entries that associate PVs (i.e., abstract
representations of functionality like “read a current”) with device drivers and that associate devices with interfaces
that they are connected to.

This will now be explained in detail: A user-issed command to write to or read from a PV ends up in a call to
pva, then pva looks into a database table called pvs to find a driver program for the corresponding device (physical
or virtual) and a device-specific database table (DSDT) with further information. It then calls the driver and
hands to it the PV name and the DSDT, which contains specific information on the action to take with a given
PV, and which interface to use (by a symbolic interface name). The driver then generates command strings, etc.
appropriate for the action to be taken (for example a string instructing a voltmeter to take a reading and return
the result), and passes the command and the symbolic interface name to the interface gateway intAcc. IntAcc then
consults another database table to resolve the symbolic interface name into a real one, and to modify the command
string accordingly (for example, embed the command in a string containing additional information, such as GPIB
bus address). Thus, if a device is connected to a different interface, or its sub-address on a bus (GPIB, modbus,
etc.) changes, then the corresponding entry in the interfaces database table needs to be modified. Conversely,
a reply by a device is modified in intAcc according to interface-specific rules specified in the interfaces table (for
example echo stripped off), and then passed to the driver, which interprets it to produce a reply to the user (in
case of a PV read operation).

It is important to know where changes in C3PO must be made when the experimental setup changes. For every
addition or removal of an instrument, or every change of the way an instrument is connected, a change must be
made in exactly one place in the database structure, and for new intrumewnt type, exatly one driver program
must be supplied. Because it is so important, it will be repeated once more: Every change in the experiment’s
configuration requires changes in exactly one file from which database entries are generated.

6

• when a new device is introduced into a setup, then a file defining entries in a new database table for this
devices must be generated (or parameters in an existing definition file must be changed to generate such a
table - see Sec. II). Furthermore, it may be necessary to write a device driver if it doesn’t yet exist for this
type of instrument. The driver needs to generate command for the instrument and interpret replies.

• when the interface assigned to a device is changed, then the entry in the interfaces database table need to be
changed. This applies for simple changes, such as using a different serial port, or a different GPIB address or
a different TCP address to more drastic ones, such as using an ethernet interfce for an oscilloscope instead
of its USB interface.

If the connections of physical devices to physical interfaces changes, such as a swap or re-assignment of serial ports,
then this change needs to entered into the interfaces table, but everything else stays the same. This is even the
case if the type of interface changes, such as when an oscilloscope is no longer connected through a USB interface,
but rather through ethernet - all that is necessary is to update the entry in interfaces. intAcc can communicate
with interface ahndlers by calling them through the operating system, or (preferred) by sending a message through
a TCP socket to a daemon interface handler.

Because PV names can get somewhat lengthy, C3PO provides the means to use alias (shorthand) names for
them. These are stored in a table called alias (see Sec. II for details). Alias names are resolved at the HA(-3) level
and are context-specific (see below). All other tables are not relevant to the end user. For a complete overview of
database tables, see Sec. II.

The exact nature and number of HA:1 routines present in a site installation depends on the experiment, but it
should be kept to a minimum. Typical HA:1 routines would be to move a motor, read a detector, etc. Even if, for
example, different types of motors are combined that require different hardware drivers, a single HA:1 routine is
sufficient because all it does is to write the destination to a PV. Resolution of drivers, etc. is done by pvr.py when
it looks up the PV in the database. Therefore, the HA:1 routines are, typically, representative of elementary tasks
like “move something”, “read something”, etc. If hardware is changed, for example one type of motor replaces
another, the user will, ideally, not even notice the change. Although possible, in principle, to call the HA:0 routines
from HA-2 and higher, it is good style to not do so, but rather always go through HA:1. Discipline in that respect
will be very helpful in debugging an experiment.

The files that comprise a C3PO installation reside in several directories, which are, here, all referenced relative to
the C3PO root directory. End users should only access routines in the ./user directory and, if necessary, write python
routines for experiment automation in that directory. Data are stored by default in the ./DataFiles directory, and
logs are kept in the ./logs directory. In the process of a C3PO site installation, the contents of the ./user directory
(but not ./DataFiles or ./logs) are deleted, and are replaced with the installation default. Users should therefore
back-up their own scripts somewhere else, so they are not lost when the site installation is re-done or updated. If a
routine is used often in an experiment, then it can be saved in the ./CustomFilesXXX/user directory from whence
it is copied into ./user by the installation routine (where XXX stands for a string specific to the installation),
see Sec. II for details on the installation process. The directory ./docu contains documentation. The ./C3PO
directory contains installation-specific routines (drivers, etc.) that are created by the person installing C3PO. Its
contents are also overwritten in the installation process by files stored on ./CustomFilesXXX/C3PO, modified by
the installation porogram using information stored in the ./setup file. Finally, the directory ./installation contains
core code only. There is nothing in there that needs to be modified by the installer, and end users should not even
entertain the thought of going there (I see, you already secretly took a peek).

The simplest use of PVs is for single effects, i.e, writing to a PV to, say, move a motor, or read a detector
through a PV. Some other common scenarios are implemented in C3PO, namely user calculations and scans. A
user calculation is a routine that reads from PVs, performs a calculation on them, and returns the result as a PV.
User calcs are started and stopped by writing 1 or 0 to associated trigger PVs. A scan is a stepwise change of one
or more PVs, and acquisition of data in each step. Scans may be multi-dimensional, i.e., the data aquisition of an
outer scan consists of triggering an inner scan.

A. How the PV Structure Works

In order to properly use C3PO, it is very helpful to understand the relationship between PVs and real-world
events. It is also helpful to understand that user-accessible PVs are always represented in two (or in rare cases
more than 2) database tables, namely the main pvs table, and in at least one (rarely more than that) driver-specific
table. With this split, all PVs present themselves to the user in the exact same way, the only distinction being
whether a PV is of type ‘W’ (write-to) or ‘R’ (read-from). The entries in the pvs table contain pointers to the
driver and to another, driver-specific database table that C3PO is to use to work with that PV. Frequently in this

7

document, there will also be mention of other PV types, such as ‘T’ for ‘trigger’, ‘S’ for ‘setup’, etc., but these are
simply write-type PVs with a particular function. Trigger Pvs are used to start something that has been set up
before by writing to the proper setup PVs, such as scans, timers, user calculations, etc. Most often, writing a ‘1’
to a trigger PV will start the associated process, and a ‘0’ will stop it before it would do so by itself, but there are
other possible trigger values, too, depending on the function to be triggered.

From the user perspective, the most basic operations that everything else (scripts to control an experiment,
etc.) is built on, are operating-system (OS) calls to pvr.py <callfrom> <PV name> to read from a PV, or OS
calls to pvrw.py <callfrom> <PV name> <value> to write a value to a PV. Here, the command-line argument
callfrom is the name of the script from whence the call comes, PV name is the name of the PV (or an alias name)
to write to or read from, and value is the string or numerical value to be written. The callfrom information is
mainly required for alias resolution (see below). Although, in principle, an end user can directly call pvr or pvw
from the command line, this is not advisable. Rather, one should always go through function-specific (move motor,
read detector, etc.) HA-1 scripts that do the calls to pvr and pvw.

Pvr and pvw look first into the alias database table to see if the PV name passed to them is an alias name,
and, if so, resolve it to the actual PV name. If none is found, it is assumed that the name is an actual PV name.
Alias-name resolution depends on the context, i.e., the callfrom command-line parameter. The same alias name
may thus mean entirely different things if used by different HA-1 routines. This is a very practical feature because
different functions of the same device (such as motor move, motor readback, etc.) are performed through distinct
PVs, but these can all have the same alias name.

With, now, the actual PV name in hand (directly or after alias resolution), pvr.py and pvw.py look into the pvs
table to retrieve from it the entry with the PV name, which contains further information, such as the name of the
driver routine, name of another database table specific to the driver, etc. Pvr and pvw then call the driver whose
file name they found in the pvs table, and give exactly the following information to it as command-line parameters
of the operating system:

• the keyword “EXEC” (drivers can perform other tasks described in Sec. II),

• the callfrom parameter and its own file name (pvr.py or pvw.py),

• the name of the driver-specific table found from the entry in pvs,

• and the value of the PV to be written (in the case of pvw.py).

The driver-specific database table contains corresponding entries for the PVs, i.e., every PV in the pvs table needs
to have a corresponding entry with the same name in some driver-specific table. However, the driver-specific tables
may contain further PVs that are not in the pvs table, but are rather meant for internal use only. The entries in
the driver-specific tables contain further information for the driver, such as physical interface (serial port, etc.), or
other information that the end user does not need to worry about.

Depending on the driver, a good part of its functionality may be contained in the relations between PVs in the
driver-specific database table. PV entires in a driver-specific may be of the following types: ‘R’ for ‘read’, ‘W’ for
‘write’, ‘I’ for internal use, ‘S’ for setup, or ‘A(..)’ for ‘arithmetic’ specified by the contents of the parentheses. A
W-type PV in the pvs table may correspond to a W-type or S-type PV in the specifc table, and an R-type PV in
pvs may correspond to an R-type, or an A-type PV in the specific table. I-type PVs are not user-accessible, except
by peeking directly into psql. Good examples of this are the scan (see Sec. II) and software-timer drivers (see Sec.
II).

B. Setup, trigger, and status PVs

Even though setup and trigger PVs are nothing but write-type PVs, and status PVs are simply read-type ones,
it is helpful to take a closer look at the roles they play in C3PO: Often times, a real-world efect can be achieved
by simply writing a value to a PV, for example send an actuator to some position. However, there are other, more
complex cases, such as running a scan. Before a scan can run, one has to set it up by specifying what to move, what
to read back, where to write the data, etc. Such cases are handled in C3PO in the following way: In the pertinent
driver-specific database table, i.e., scans as part of the standard installation, there are several PVs of type ‘S’ for
setup with corresponding entries of type ‘W’ in the pvs table. When a value V is written to such a PV, pvw.py
finds the entry in the pvs table, retrieves the names of the driver and the driver-specific database table, and calls
the driver with that information. The driver will then find the PV in its database table, and, because it is of type
‘S’, will enter the value V into a field in the database table called ‘ivalue’. Nothing more happens at this point.

8

There is also at least one PV entry of type ‘T’ for ‘trigger’ in the driver-specific database table. Its correponding
entry in the pvs table is of type ‘W’. There are several columns in the driver-specific table, which are populated
only in a row for a trigger PV. These entries give the names of the setup PVs that hold the information needed to
run the scan, etc. When a value T is written to such a PV, pvw.py calls the driver, as described above. The driver
then finds the names of the setup PVs, retrieves the setup information from the ‘ivalue’ field in each of them, and
then proceeds with the operation. There may be more than one trigger PV, typically related to different setup
PVs. For example, there is a dedicated trigger PV for each dimension in a multidimensional scan. Each of these
will be related to a different set of setup PVs to hold the information which actuators to move in that particular
dimension of the scan, etc. Some of the setup PVs may, however, be the same for different trigger PVs, such as
the one that holds the name of the data file in a multidimensional scan in case all scan data should be collected in
one file.

C. Specifying PVs for an Experiment

A part of setting up an experiment is to specify the PVs for all devices. Each type of device (pA meter, HV
supply, etc.) has its own device-specific database table (DSDT), the contents of which are defined in a file with a
name that ends in ‘ Defs’. The installation scripts search for all such files, generate the DSDTs, and automatically
enter all the PVs also in a database table named PVs, which is the go-to location for the user-interface gateway
program pva to find out what to do with a given PV (see Sec. II). Two technical notes: Defs files are executable,
which have in the first line a “shebang” that directs futher processing to the program setupDatabase.py. The
setup scripts automatically call a program generatePVlist.py that generates an file Pvs Defs user that is then
processed in the same way as the other Defs files. Entries in a DSDT specification file may be parametrized in
several ways, as described in the following subsections:

1. foreach / unforeach

The foreach statement allows the generation of PVs for multiple devices of the same type from a single entry in
the DSDT file. Its syntax is: # foreach key in {comma-separated list} in a line by itself (the regex pattern
is ^\s*#[#\s]*foreach\s+\S+\s+in\s+\{.+?\}\s*$). Every line in the Defs file that contains the key in the
first column (the one for the PV name) will then generate multiple entries in the database, one for each item in
the list inserted for the key. Corresponding replacements are then done in other columns, as well, but the foreach
replacement is triggered for an entry in the Defs file only it the key is in the first column. This mechanism is effective
only for lines in the Defs file following the foreach statement. A foreach statement can also be cancelled, so it is
not effective for any lines following one with the syntax # unforeach key (the regex is [#\s]*unforeach\s+\S+).

For example, a Defs file might contain the following lines:
\#foreach_S_in{a,b}
HV_S_.id,R,*IDN,,,HV_S_,
This will then generate two PVs named HVa.idn and HVb.idn (to obtain the ID reply from a Stanfor PS350
high-voltage supply in this case).

Multiple foreach replacements may be present in a single line in the Defs file. This will then generate a number
of PVs given by the product of the numbers of items in each f the foreach-item lists. An alternate mechanism
with very similar effect is described below under “Indices”. Whether to use foreach or indices is only a matter of
convenience.

2. define / undef

Is applied before foreach expansion and works as in C

3. replace / unrep

Is applied after foreach expansion and works otherwise like define

9

4. [] Indices

There are two types of indices, those in square brackets and those in curly brackets. The latter will be described
below. Indices in square brackets have the same effect as a foreach statement, but only for the line in which they
occur. Square-bracketed indices can be defines as lists or as ranges.

A range is given by numbers or letters a, b or a, b, i in the form of [a : b] or [i = a : b], where a is the first index, b
is one beyond the last one (in the python way), and the optional i is a range identifier that may become necessary
in case there are multiple ranges in a PV name (see below). If a and b are numbers, the indices include a. . .b− 1,
otherwise indices run from alphanumerical ASCII characters for a to the one before b. The following points should
be noted:

• a must be smaller than b, either numerically, or in the sequence of ASCII characters, i.e., 0 (0x30) is smaller
than A (0x41), and A (0x41) is smaller than a (0x61), etc.

• if a is a number, and b is not, then a needs to be single-digit (because it is being interpreted as an ASCII
character)

• only the alphanumberical ASCII characters in a given range are used, ASCII-wise, there would be several
special characters between 9 (0x39) and A (0x41), but these are being skipped, and likewise for those beween
Z (0x5A) and a (0x61)

The setup script setupDatabase.py will internally convert a range into a list, and then process it.
A list is given in the form of a comma-separated sequence of items in the form [a, b, c, . . .] or [i = a, b, c, . . .].

As mentioned above, and descibed in more detail below, the optional identifier i serves to disambiguate among
multiple lists. When generating database entries, setupDatabase.py will, for each entry in the list, replace the
square brackets and its contents with one item in the list (whether specified as such, or generated from a range).
It will do so for lists in all columns of a line in the Defs file, but only if that list does appear in the first column,
i.e., the one for the PV name.

There may be multiple ranges or lists in one PV name. As long as the lists are substantially distinct, the properly
corresponding ones in other columns will be identified correctly and will be replaced by the pertinent list items.

5. {} Indices

The other type of range or list is enclosed in curly brackets. This one will not lead to separate PV entries for
each of its items, but rather a comma-separated list in place, where each item in that list has the curly brackets
and its contents replaced with one item from the list in curly brackets. Unlike with square brackets, this will occur
independently of whether the curly brackets appear in the PV-name column. The rules for converting ranges to
lists (ASCII and such) apply in the same way as for square brackets.

6. Example

An example of a DSDT specification file is shown in Fig. II.

FIG. 3:

IV. FLOW

Access to a PV, whether directly through rpv.py or wpv.py, or indirectly, for example from within a scan, occurs
by the following sequence of events:

• the program that needs to access a PV (rpv/wpv or something internal to C3PO) calls the central PV gateway
pva.py and gives it the PV name or alias (see Sec. II), and, in case of a PV-write operation, also the value to
be written

10

• pva.py resolves PV alias names (if necessary), then looks up the PV in the pvs database table to find the
device driver and device-specific database, then calls the device driver (internal programs scan as the scan
driver will receive information from pva to call the driver directly, thus bypassing some communicaitons
overhead)

• the device driver looks up further information for the PV in the device-specific database table, including, in
particular, the interface name or alias name (not to be confused with a PV alias), generates the command
string, then calls the interface gateway intAcc and passes the comand string and the interface name/alias to
it

• intAcc looks up the interface name/alias in the interfaces database table. Actual physical interfaces are
either represented by OS (name beginning with OS) calls or SSL TCP sockets (name beginning with SSL).
Interface aliases, protocol wrappers, etc. have names beginning with anything but OS or SSL or the special
charcter & which is resreved for internal use (see below). If intAcc receives an OS or SSL interface name
from the device driver, it will call that one directly. Otherwise, it will resolve what may be an extended chain
of alias names and protocol wrappers. It is good practice to never specify a physical interface (OS or SSL)
directly in the DSDT definition file, but always refer to an alias. This practice facilitates any modifications in
device interfaces, such as when a device is moved from a serial to GPIB interface because then one needs to
make changes in the interfaces database table instead of searching through DSDT definition files. Aliases and
protocol wrappers may be chained. For example, an alias name for a device, say “iK6485” for the interface
to which a certain picoammeter is connected might resolve to a sequence “NIsGPIB / SSLs232 10” meaning
that the picoammeter is connected to a GPIB bus, which is connected to the host computer through a serial-
to-GPIB converter. Then, the entry for K6485 would contain the GPIB address, and the entry for NIsGPIB
would contain protocol-wrapping information (how to tell the serial-GPIB converter the GPIB address, how
much to write or read, etc.), and the entry for SSLs232 10 would contain serial-specific information, such as
baud rate, etc. Other GPIB instruments could also refer to the same chain of NIsGPIB / SSLs232 10 without
duplicating the information specific to the serial-GPIB converter or the serial link. In order to minimize
database traffic, intAcc will automatically generate database entries for fully resolved chains whenever a
cahin is accessed for the first time. These entries have an ampersand character prepended to the interface
alias name.

A. The interfaces DB Table

The interfaces database table defines all the interfaces through which C3PO communicates with the devices
in an experiment. It is, functionally, a mirror image of the pvs database table that contains entries for all the
PVs that a user can access. The interfaces table can contain entries for actual physical interfaces, alias names
for them, or protocal-wrapper alias names. Interface names or interface aliases are for use by device drivers, i.e.,
they can be Protocol wrappers are to be used only by intAcc. Examples are given in Tab. III and are described in
Sec.II.

The columns in this table correspond to columns in the database:

• id: internal for psql

• name: name of the interface, interface alias, or protocol-wrapper alias

• dnPort: if name is:

– a physical interface, the port in the computer corresponding to the interface, for example, /dev/ttyUSB0
for a USB-serial port

– an interface alias, the name of the actual interface, for example, if K6485a is the name of an interface
alias, then SSLs232 1 might be the actual interface represented by the alias. The latter needs to be
represented in the interfaces DB table, so intAcc can find it there.

– a protocol-wrapper alias,

• upPort: in the case of

– a physical interface, where the interface driver communicates through TCP sockets (interface names
beginning with SSL or TCP), the host name (local or remote) and the TCP port to access the interface
driver

11

– a physical interface, where the driver is called through the OS (interface names beginning with OS ,
rare, not recommended)

–

–

–

• if

• if

• if

• if

• comment

The rows in the DB table can contain:

• a physical interface

• an interface alias

id name dnPort upPort driver start call daemon comment

1 SSLs232 1 /dev/ttyUSB0 localhost 12347 SSLs232.py 9600 8 N 1 xoff 1 0.1 # comment

TABLE III: Some sample entries in the interfaces DB table

B. Interface Drivers

Between C3PO and the devices controlled by it are computer interfaces that are managed through the intAcc
component of C3PO (see Fig. II).

The last step in communicating with devices controlled by C3PO is
Interface drives are background processes that handle the communication with particular interfaces (serial ports,

etc.). An interface is started with one parameter that tells it which port to listen to.

V. USER CALCS

User calculations are useful for providing values that are computed as some expression of PVs. Several user calcs
UC1..4 are provided as part of the standard installation. They are set up in the usual way of links between status,
setup, and trigger PVs. However, unlike other driver scripts, the UC.py script will start a new process on the OS
level that will run independently until stopped (see Sec. ?? for details). Setup PVs of a user calc are (with PV
name in UC1). As always, the names have no intrinsic significance. Their meaning comes from the relations set
up in the database, i.e., the entries in the pertinent columns of the trigger PV.

• UCX.srcPVs (X=1..4): a space-separated list of PV names that enter the expression (below)

• UCX.Expr (X=1..4): the expression to be evaluated by the python eval() function. In this expression, $1,
$2, etc., refer to the PVs listed in UC1.scrPVs, so $1 is the value that one can read from the first PV in the
list in UCX.srcPVs (corresponding X=1..4). There are also special keywords: NOW refers to the current
system time, START refers to the time the user calc was started, PREV is the most recent result of the
calculation, and ACCUM is an accumulation buffer for calculating integrals with exponential decay (see
below).

• UCX.Dest (X=1..4): the PV to which the result is written by calling pvw.py

The user calc is triggered by writing a non-zero value to the trigger PV. That trigger value is used as the update
time interval, i.e., how much time passes between evaluations of the expression.

12

VI. TECHNICAL DETAILS

A. Device Drivers

Drivers translate from the PV structure to device communication. The device-specific communication protocol
is built into the respective driver program and device-specific database tables. However, if the device is connected
to a bus-type interface (GPIB, modbus, etc.), commands may be wrapped into larger ones that contain bus-routing
information (see Sec. II for an example). Drivers correspond to device types, such as Keithley 6487 picoammeter,
or DCH motor driver. Information specific to each device is contained in a device-specific database table (DSDT).
There is only one DSDT for each device, but, depending on the setup of the database (see Sec. II), multiple devices
of one type may be represented in one DSDT. The most common cases would be to have one DSDT for one,
and only one, device each, i.e., multiple DSDTs for multiple devices of a given type, or to have just one DSDT
containing multiple devices for each type of device. For example, multiple picoammeters of the same type may be
present in an experiment. Then, there is one driver program for the picoammeters, and each picoammeter may be
represented by one DSDT, or all picoammeters are collected in one DSDT (or a few pA meters are in one DSDT,
others in another, etc.). This is illustrated schematically in Fig. II. The setup procedure automatically generates

DB table pvs

dev. 1 PVs

dev. 2 PVs

dev. 3 PVs

dev. 4 PVs

dev. 5 PVs

device 1: type A

device 2: type A

device 3: type A

dev. 3 PV pva

dev. 2 PVs

dev. 3 PVs

dev. 1 PVs

device of type B

another device of type B

intAcc

int handler

driver B

driver A

DSDT 1

DSDT 2

FIG. 4: Schematic representation of device access through drivers: A user accesses device no. 3; pva consults DB table pvs

to find that device no. 3 requires driver A, and that specific information is found in the device-specific datavase table DSDT
no. 2 (which also contains information on device no. 2 that is not required here); pva calls driver A and tells it to look for
the requested PV for device 3 in DSDT2; with that information from DSDT2, driver A assembles a command and sends it
to intAcc together with information on which interface to use. intAcc then accesses the interface for device 3 through the
proper interface handler.

the entries in the PVs database table to direct the driver program to the correct DSDT for each PV access.
The DSDTs contain listings of PVs associated with each respective device along with information what to do

when the PV is accessed. The DSDTs are the places where the PVs are specified, as described in Sec. II - each PV
is specified in exactly one DSDT description file, and nowhere else in the experiment-setup files.

All driver programs expect either one or five arguments. If the first argument is ‘ID’, then no further arguments
are required, and the driver returns an ID string containing its ID, version, author, etc. information. Otherwise,
the first argument specifies which action to take with respect to a device. The next arguments are then: callfrom,
dsdt, pvname, pvtype. callfrom contains a string with call-history information for debugging purposes, dsdt is the
name of the DSDT, pvname is the PV name, and pvtype is one of ‘R’, ‘W’, ‘S’.

13

VII. ACCESSING PROGRAMS OUTSIDE OF C3PO

In some cases, it may be more convenient to control a device through software supplied with it instead of a C3PO
driver. C3PO provides a way for doing so for device-specific software that can be called on the command line and
returns results through the command line or data files: For this task, a driver named ShellProg is provided along
with a template PV definition file ShellProgram Defs. The following explanation will become clear by referencing
to the Defs file. The template file defines three sets of PVs that serve to define the program name and command-line
parameters, and to read back replies from the external program. The names of the PVs are defined in the Defs
file by the line entries and the line #define ShP ShellP, which changes every occurrence of ShP to ShellP (very
useful for global name changes), and by the line foreach @ in {1,2,3}, which tells the setup script setupDB.py
to generate PV names with “@” replaced with “1”, “2”, and “3”. These may easily be changed. The three ShP
sets can be used to associate any program with PVs, define the command-line parameters, and read back replies.
This works through internal PVs, each of which holds one piece of information (such as the program name, or one
command-line parameter, each). With this, the PV structure, which allows writing or reading only one item at
a time, can be used to build more complex commands. The PVs that read from and write to these internal PVs
have associations defined with them that link them to the internal PVs. The same holds for the PV that triggers
program execution. In order to use this structure, one needs to issue a series of PV write commands, one for the
program path and name (or separately for path and for name), and one for each command-line parameter. When
all this is set up, a write operation to the trigger PV (ShellPx.exec, where x=1,2,3) starts the external program.
Reading from the PV ShellPx.read will also trigger the external program and wait for its completion, then return
a result. That result (also if done through ShellPx.exec) is stored in an internal PV and can be read from the PV
ShellPx.result.

There is also a set of PV in the template file that shows how to pre-define associations of programs with PVs,
bypassing most of the internal PVs, and thus saving setup work for programs used often in a particular setup.
This works by putting a colon in front of an entry in the PV association field, signifying a direct value instead of
a reference to an internal PV.

PV name type function parameter result comment

ShellPx.exec W trigger ignored none x = 1..3

ShellPx.read R trigger and read-back N/A program result x = 1..3

ShellPx.result R return last result N/A result of most recent call x = 1..3

ShellPx.prn W set program name name N/A x = 1..3

ShellPx.prn R get program name N/A name x = 1..3

ShellPx.prp W set program path path N/A x = 1..3

ShellPx.prp R get program path N/A path x = 1..3

ShellPx.prpn W set program path/name path/name N/A x = 1..3

ShellPx.prpn R get program path/name N/A path/name x = 1..3

ShellPx.pary W set program parameter no. y path/name N/A x = 1..3, y = 1..10

ShellPx.pary R get program parameter no. y N/A path/name x = 1..3, y − 1..10

TABLE IV: PVs for external-program access provided by the template ShellProgram Defs (when reading that file, remember
to substitute “ShellPx” for ShP@, where x = 1, 2, 3 is inserted for “@” per the “foreach” line). As stated above, PVs with
the same name but of different types are different PVs.

VIII. SCRIPTING THROUGH THE PV STRUCTURE

Besides individual-PV access and strictly formalized procedures like scans, it is often necessary to exert more
free-style control about processes in an experiment. One way for doing so is to use external programs as described
in Sec. II. However, experiment parameters that are accessible through PVs should be controlled from within
C3PO. Scripts provide this free-style PV access.

Examples are the before and after scripts for a scan, i.e., scripts that can be optionally defined to execute at the
beginning, and after conclusion of a scan. These need to be called from within C3PO, and the only way to do so
is to write to a trigger PV for the respective script. There is a dedicated driver script that is activated when one
writes to such a trigger PV, and other PVs are also associated with this driver to pass parameters to the script to
be triggered.

14

IX. SCANS

Scans are a little more complex than simple motor moves or detector-read operations. Note that in the following,
the word “scan” is used in two ways that should be clear from the context. One is the provision of a scanning
capability, i.e, the scan driver, pre-defined scan PVs, etc., and the other is the actual execution of a scan, i.e, the
sequential motions and detector readout operations. To distinguish them, the former will be capitalized, i.e., ‘Scan’
means the scanning capability, and ‘scan’ means execution of a scan.

A scan needs to be set-up, i.e., C3PO needs to know the start and end points, total number of scan points, what
to move, what to read, etc. Multi-dimensional scans are created by simply having a scan trigger a scan in the same
way as if a detector would be triggered. The scans can be linear with evenly-spaced points between the start end
end positions, or they can be table scans where freely defined actuator positions and detector acquisition times are
given as lines in a table.

From the user perspective, a Scan is a set of PVs that contain setup and status information. In simple cases,
when only one set of actuators needs to be moved, and one set of detectors be read at a time, it is sufficient to work
through a single set of such Scan PVs. However, there are cases when several scans need to run simultaneously.
The most obvious one is that of multi-dimensional scans. Then, the scans of all dimensions are simultaneously
active, and each needs its own set of scan PVs.

Setting up a scan by writing to the pertinent PVs is best done by a script that reads the parameters from a file,
as demonstrated with the script setupScan.py that is part of the standard installation. A file setupScanD1 with
sample scan parameters is also part of the standard installation. After editing the parameter file, one simply calls
the setupScan.py <parameter file>, e.g., setupScan.py setupScanD1, and the database tables will be populated as
required. This setup procedure needs to be done each time a scan is to be performed at an experiment. It should
not be confused with the installation of the scan PVs, which is done by the script run installation.py once per site
installation.

To start a scan, one writes a “1” to a trigger PV. To the end user, this is a PV of type ‘W’, just like any other
write-to PV. The scan driver will know from entries in its own database table that this PV is meant to trigger a
scan, and which other PVs contain all the scan setup information. Before the scan is started, these PVs need to be
populated with the pertinent information, simply by writing to them. Since they are all associated with the scan
driver in the pvs database table, the values written to them are passed to the scan driver, which then handles the
task of entering the information into its own database table.

The database table scans has several columns for scan setup information. By writing to a PV that is of type
W in pvs and type S in scans one can fill in these columns. Several of such write operations are required, one for
each scan parameter (start, end points, no. of intermediate points, etc.)

To practice scanning, one can set up a dummy scan using FIFO or RW PVs (see Sec. XI) to write “actuator”
positions to, and read them back like a detector. Detectors can also be simulated using the software timer (see
Sec. ??).

A. Scan PVs

Each Scan needs a set of PVs, as shown below for the scanD1 that is part of the core scripts of C3PO. These
PVs fall into three categories: 1) trigger (type ‘W’, typically one such PV per Scan), 2) setup PVs (type ‘W’) that
tell the scan driver how to conduct the scan, and 3) status PVs (type ‘R’) that return information on whether
the scan is done, etc. These PVs are brought into relation with each other through databse entries created in the
site-installation process. Although the end user does not need to create these entries, and does not necessarily need
to know about them, it is very helpful to gain some understanding of the way the relations between PVs make a
Scan. This is described in Sec. II

PV names are free of constraints, even if some naming system is advised, such as here all PVs beginning with
scanD1. However, neither the part before, nor after the period in the name is required. The scan scripts do not
derive any structural information from a name itself, but only from how cross-references are set up in the scans
database table.

• scanD1.Trg triggers a scan once everything is set up

• scanD1.ScanPath OS path to where the data collected in the scan are written

• scanD1.ScanFile to where the data collected in the scan are written (path is prepended to this file name)

• scanD1.Before optional: a trigger PV (type ‘W’, write a ‘1’ to it to trigger. This is done before the scan is
executed

15

• scanD1.After optional: a trigger PV (type W’, write a 1’ to it to trigger. This is done after the scan is
executed

• scanD1.ScanType: ‘lin’ or just empty for a linear scan, ‘table’ for a table scan

• scanD1.Actuators: a space-separated list of actuator PV names

• scanD1.ActSettle: a space-separated list of settling times for the actuators given in scanD1.ActSettle

• scanD1.ActFrom: a space-separated list of starting points for the actuators given in scanD1.ActSettle

• scanD1.ActTo: a space-separated list of end points for the actuators given in scanD1.ActSettle

• scanD1.NptOrScFile

• scanD1.DetTrg: a space-separated list of PVs to trigger detectors

• scanD1.DetWait: a space-separated list of PVs that reflect detector status. A detector that is done returns
1, otherwise 0

• scanD1.DetRead

B. Scan Internals

PVs related to scanning are represented as entries in the pvs database table, which directs the pvr.py and
pvw.py scripts to call the scans.py driver and to (normally) use the scans database table. Each of these PVs
then has another corresponding entry in the scans database table. This latter table has columns by the following
names: pvname, type, ivalue, assoc, scanpath, scanfile, before, after, scantype, actuators, actsettle, actfrom, actto,
nptorscfile, dettrg, detwait, detread, comment. Of these, pvname and type contain the name and type of each PV,
ivalue is used only with the setup PVs (see below), and scanpath, .., detread are used only with the trigger PV
(see below). PV types are ‘T’ for trigger, ‘S’ for setup, ‘R’ for read-status, and ‘I’ for ‘internal’, where ‘T’ and ‘S’
correspond to type ‘W’ in the pvs table, and ‘R’ is also ‘R’ in the pvs table. internal PVs are not represented in
the pvs, but only in the scans table.

The setup PVs are used to send parameters to a scan, such as which actuators to move, which detectors to read,
etc., by writing the parameter value to the respective setup PV (of type ‘W’ in the pvs table and of type ‘S’ in
the scans table). This has no immediate effect; rather, the value is stored in the ‘ivalue’ field of the PV entry in
the scans table. These parameters are retrieved from the database when a scan is triggered by writing a ‘1’ to the
scan-trigger PV, which has the following characteristics:

• it is of type ‘W’ in the pvs database table

• has an entry ‘Scans’ in the ‘drname’ column of the pvs database table

• has a type ‘T’ in the scans database table (or whichever other database table is specified in the pvs table)

• has the columns scanpath .. detread in the scans properly populated with the names of PVs containg the
scan parameters (setup PVs, type ‘S’)

When a ‘1’ is written to a scan-trigger PV, pvw.py calls the scans.py driver (because it is told so by the entry in
the ‘drname’ column of the pvs table), and passes the PV name, scans-specific database-table name, and the value
to that driver. The scans driver then looks in the scans-specific database table and finds that the PV is there of
type ‘T’. Following this, the driver looks up the entries in the scanpath, .., detread columns of the entry for the
trigger PV. These name the setup PVs where the driver will then find the parameters.

X. SOFTWARE TIMER

The driver SwTimer.py. provides coarse timing functions through the timing capabilities of the operating system.
Depending on the capabilities of the computer, one can expect accuracies between milliseconds and about a second.
Precision timing for gating detectors, etc., should be done with dedicated hardware that requires its own separate
drivers. The SwTimer.py driver can handle multiple timer channels, each of which is represented by a set of PVs
in its internal databse table swtimers. Some of the PVs in such a set contain programmed timer functionality, as

16

explained below. It is thus easy to add further functionality to a timer by setting up the PVs. The timer driver
itself only has two functions: start counting seconds, and doing arithmetic on PVs. At the minimum, each timer
channel requires a PV for triggering it (start counting seconds), and at least one PV to read the status. When a
timer is triggered by writing to the associated PV, the current system time is captured in a database entry internal
to the SwTimer.py driver. Any subsequent status requests will then subtract that start time from the time when
the status was requested to obtain the time since trigger.

The timer channel provided with the base installation has one PV (SwTimer1.Count) to read the fractional
seconds since start, as well as four PVs that return yes/no information on whether a threshold amount of time has
passed since start (see below). There are also four write-only PVs for setting up those thresholds. What happens
when a value (anything) is written to the trigger PV (identified as of type ‘W’ in the pvs table and type ‘T’ in the
swtimers table) is that the system time (in UNIX systems typically the umber of seconds since Jan. 1, 1970, the
UNIX epoch) is written to an internal PV. When the PV SwTimer1.Count is read (type ‘R’ in the pvs table, type
‘A’ for ‘arithmetic’ in the swtimers table) is that the swtimer driver subtracts the start time from the present time,
and returns that result. This arithmetic operation is not hard-coded into the swtimer driver. Rather, type ‘A’ in
the database table allows for the specification of arithmetic operations (actually, anything that can be processed
by the python function eval()). The data to go into that calculation are given as PVs, etc. in a space-separated
list in the ‘assoc’ field of the database table. In the pre-defined timer of the installation, the full type entry reads
A($1-$2). This tells swtimer.py to take the first entry ($1) in the ‘assoc’ column, which is NOW , and the second
entry ($2), which is the internal (type ‘I’) PV SwTimer1.Start, then to resolve NOW to the current time and
SwTimer1.Start to the start time (which was stored there by writing to the trigger PV), subtract the current time
from the start time, and return that result. There are also four write-to PVs (type ‘S’ in the swtimers table) to
set time thresholds, and four arithmetic PVs that return as their result whether the time since timer start has
exceeded the threshold (result 0), or not (result 1). In other words, the result has the meaning of “busy”, or “wait
for some time to pass”.

Here is a complete listing of the PVs for the timer channel provided in the base installation:

• SwTimer1.Trg (W): The internal timer is reset when a “1” is written to this PV. Actually, the system time
(Unix epoch) is stored in the database

• SwTimer1.Count (R): counter status current system time (epoch) minus epoch when SwTimer1.Trg was
issued

• SwTimer1.Thr1 (W): event threshold 1

• SwTimer1.Sta1 (R): event status 1; if the timer counts past the value last written to SwTimer1.EvThr1, the
read-back from this PV goes from 1 (true) to 0 (false). In other words, this is a sort of “still-busy” function

• SwTimer1.Thr2 (W): analogous to SwTimer1.EvThr1

• SwTimer1.Sta2 (R): analogous to SwTimer1.EvSta1

• SwTimer1.Thr3 (W): analogous to SwTimer1.EvThr1

• SwTimer1.Sta3 (R): analogous to SwTimer1.EvSta1

• SwTimer1.Thr4 (W): analogous to SwTimer1.EvThr1

• SwTimer1.Sta4 (R): analogous to SwTimer1.EvSta1

Other functions based on elapsed time can be set up by populating the swtimers database table, accordingly (or
some other database table, which the swtimer.py driver is directed to through the database entry in the pvs table).

To use a software timer, the end user first sets up any timing thresholds (if required), and then sends any value
to the designated trigger PV. The elapsed time can be monitored through the designated read-back PV (here
SwTimer1.Count), or “busy” PVs (here SwTimer1.Stax).

The pre-defined PVs for the software timer are defined in the file ./installation/coreScripts/CoreTimerDefs, and
these definitions are inserted into the database by the script ./installation/coreScripts/setup swtimers.py in the
installation process. Other timer channels can be set-up by adding to the entries defined in CoreTimerDefs through
a user-defined setup.

17

XI. FIFO AND RW BUFFERS

Read-write (RW) and first-in, first-out (FIFO) buffers for PVs are part of the standard installation. Both types of
buffers are handled by the same driver, Fifo.py, and They are mostly meant for development and testing purposes.
Associated with each “channel” in the RW and FIFO buffers is a pair of PVs, one to write to, nad one to read from.
Reading from an RW PV any number of times will return the value last written to its associated write-to PV, or
an empty string if nothing has ever been written to it. In contrast to this, a FIFO buffer maintains a memory;
whenever something is written, it is pushed onto a stack, and reading retrieves (“pops”) the last item written from
the stack, exposing the next-to-last written item for retrieval. In the standard installation, the following pairs of
RW and FIFO PVs are defined:

• 4 independent channels of RW: RW.InX (write-to) and RW.OutX (read-from), X=1..4

• 2 independent FIFO buffers: Fifo.PushX (write-to) and Fifo.PopX (read-from), X=1..2, using files fifobfrX
for storage

The memory of an RW buffer is maintained in the database table specific to the Fifo.py driver, and the memory for
a FIFO buffer is in a file whose name is specified in the table (“fifobfr” in the standard installation). One can create
additional RW and FIFO channels by specifying them in a file similar to CoreFifoDefs and writing them to the
database with a script similar to setup fifo.py . These are both found in the directory ./installation/coreScripts/

XII. HA LAYERS

The Hardware-abstraction layers are structured as layers of program routines with a severe constriction at the
interface between user-supplied routines and C3PO-internal routines. At the narrowest layer, HA:0, there are only
two routines named rpv.py for reading from a PV, and wpv.py for writing to a PV. This constriction ensures a
unified interface. Below HA:0, system-internal routines branch out in a structure described beklow, and above
HA:1, users are free to define their own structure.

• HA:> 1 are routines provided by the user in any style and structure. For access to C3PO, they need to
interface with HA:1 routines

• HA:1 are routines provided by the user, meant to interface with C3PO through the HA:0 routines rpv.py
and wpv.py

• HA:0 are only rpv.py and wpv.py. These are the interfaces from the user world to C3PO

• HA:-1 is a single routine. It resolves PV alias names, then determines from the PVS database table, which
software driver to call, as well as further information for the driver, namely which driver-specific database
table to use, and which interface the physical device is connected to. At this level, the interface is referred
to by a symbolic name, which is resolved at HA:-3

• HA:-2 are the software drivers. These generate the command strings to be sent to devices and then either
pass the command and the symbolic interface name to level HA:-3, either through an operating-system call
to program intAcc.py, or through a TCP socket that a daemon called intacc listens to

• HA:-3 is the program intAcc.py or the daemon intacc. Both resolve the symbolic interface name by looking
it up in the database table “interfaces” populated from the file interfacedefs, and then write to or read from
a tcp socket being monitored by an interface handler

• HA:-4 are daemons or other tcp-socket entities (such as other computers on the network) that handle inter-
faces. The daemons need to be started up before C3PO is used.

XIII. THE DATABASE

The SQL (structured query language) database is a central component of the control-software suite. It contains
several tables with specific information relating to parts of C3PO. End users do not need to access the database
directly and do not need to know anything about its structure. However, for debugging purposes it may be helpful
to peek into the database.

18

Databases are organized into tables, each of which has columns pertinent to data for each data item, and
data items are shownin rows. The database table that is most immediately relevant for users is called pvs. It
which contains information pertinent to all the the PVs available in a given installation. Also common to all
installations are the tables admin, alias, fifo, interfaces, scans, scripts, and uc. Furthermore, there is one
table corresponding to each device driver. The tables are dscribed further, below. A listing of all the tables can
be seen at the psql command prompt with (at the UNIX command prompt, type psql <name of database >, then
type
d.

A. pvs

The table called pvs lists all the PVs in a given installation. Access to a PV, typically through a call to rpv.py
or wpv.py, internally within a scan, occurs through a call to pva.py, which, after possibly resolving an alias (see II
and II), looks into the pvs table to find: the type (read/write/internal), the driver to call, the name of the database
table that the driver should use for further information, and up to four names of programs to call for side effects.

B. alias

PV names can be somewhat lengthy, and each action on each device has a unique PV name. This can be
cumbersome to use. Therefore, alias names can be defined, which collect several PVs under a common name.
Typically, one would associate different actions of the same device with a single alias name, i.e., an alias xtr would
refer to the different actions (send to some position, query position, query if done moving, etc.) for a translation
stage. For each alias name, the table alias lists different contexts (program names where the PV access can originate
from, as well as whether this is for a read or write access), and which actual PV name this corresponds to.

C.

D.

The admin table has two columns: key and value.
The other mandatory table is called PVs. It lists all the PVs used in a given implementation. The columns in

that table are:

• index no. (integer)

• PV name (string)

• type (string)

• name of driver program (string)

• execution code for driver (string)

• optional: PV and value (separated by space) for side effect no. 1 Whenever the PV in the entry is accessed,
the side-effect value is written to the side-effect PV. It is possible to run scripts by writing to a PV, so side
effects can be python scripts, which, in turn, can call any other program

• optional: PV and value for side effect no. 2

• optional: PV and value for side effect no. 3

• optional: PV and value for side effect no. 4

• target value when last accessed (string)

• actual value when last accessed (string)

• optional: comment

19

Any additional information that may be needed to use the PV is contained in the secondary table, the name of
which is passed to the driver, and which the driver knows how to use. The target and actual values when last
accessed are mainly useful to hold motor positions. When a value is written to a PV, that value is always entered
into the target value-field. The actual-value field may be populated from the return value of side-effect no. 1 (if
present, see below). When a value is read from a PV, that value is always entered into both the target and actual
value fields.

When a PV is accessed, the main HA program looks up the PV name and checks if the requested operation
is compatible with the type (if not, it exits with an error message). Then, it looks up the name (to the OS)
of the driver program, and passes the name of the PV, optionally the name of a secondary table where further
information can be found, and the value (in case of a write operation) to the driver. The structure of the secondary
table depends on the type of PV. It is usually defined when a new type of PV comes into use, possibly years after
the initial installation. There are four columns for optinal side-effect programs. In the unlikely case that more
side effects are needed, they must be handled through indirect calls, i.e., one of the four side effects calling more,
secondary ones. Side effects may be needed for several reasons. For example, when a motor is moved to an absolute
target position, there is no guarantee that it will actually reach it. Then, a side effect could be to call a program
that reads back the actual value. This function is reserved for side effect no. 1

XIV. INSTALLATION

Installation of C3PO for use in a particular experiment may include the following steps:

1. Installation of other software that C3PO relies on: python with supporting packages, psql with supporting
packages, and, for Windows only, GNU core. This needs to be done on every computer that runs C3PO, or
part of it, but only once. See Sec. XIV A for details.

2. Writing device drivers and interface drivers, if those are not yet present. See Sec. ?? for details.

3. Defining PVs. See Sec. XV A for details.

4. Running the python program run installation.py in the C3PO root directory (see Sec. II

A. Software Installation

1. GNU Core

This package provides some core UNIX commands to be available on a windows system, so it needs to be installed
only with windows. The path to the coreutils needs to be set manually: Start menu / right-click computer /
properties /adv system settings env var /

2. Python

Windows 7: https://www.python.org/downloads/windows, Linux: Install perl with your favorite package
manager.

Ubuntu: sudo apt install python-pip
sudo apt install python3-pip

The list below shows all python packages that are needed by C3PO. Install these with pip install <package
name> and/or pip3 install <package name>. The ones that are typically part of a core python installation are
lumped together:

• os, sys, subprocess, time, re, logging, inspect, random, psutil

• psycopg2 for communication with psql (need to first do sudo apt-get install libpq-dev python-dev)

• pyserial (not serial) for the serial-port interface; the package is included as “import serial”, but it pyserial
needs to be installed instead of serial. The latter will complain about XOFF not being defined.

• ssl

20

• functools (it may already be included in python, depending on the version installed

• psutil

• vxi11 pip install -U python-vxi11 (software/python/python-vxi11-master)

• visa pip install -U pyvisa, needs also pyvisa-py

• to talk to Agilent oscilloscopes via USB: install usbtmc (install as python-usbtmc) and pyusb

•

•

Then, to install python or python3 packages, do pip install <package name> or pip3 install <package name>
To access the database from python, you need to install psycopg2 Windows: type in a terminal pip install

psycopg2 www.stickpeople.com/projects/python/win-psycopg/ Install serial module pip install pyserial

3. Installing the Database

First, the database software must be available to use, i.e., a psql server must be running and must be accessible.
Then, a the database to be used must be created. In the simplest case, the server runs on the localhost (the
computer that is controlling the experiment) on port 5432.

4. Linux

• install psql: sudo apt install postgresql postgresql-contrib

• become postgres superuser sudo -u postgres psql postgres

• on the postgres prompt #: \password postgres
and enter psql admin pwd https://serverfault.com/questions/110154/
whats-the-default-superuser-username-password-for-postgres-after-a-new-install: Do not
set the password for the UNIX account “postgres”

• on that same postgres prompt: create database <dbname>; Enclose name in double quotes to be sure the
capitalization is correct and finish line with a semicolon. If the database name contains capital letter, enclose
it in double quotes

• on that same postgres prompt: create user <username> password ‘<mypassword>’; and finish line
with semicolon

• on that same postgres prompt: grant all privileges on database <dbname> to <user>; and finish
line with semicolon

• leave postgres with \q

•

•

Get pgadmin3: (apt-get install pgadmin3 or through synaptic)

21

5. Windows 7

6. Installing psql on the W7 computer

• Go to https://www.postgresql.org/download/windows

• click on the first link “Download the installer”

• select version 9.4.11 (other versions will probably also work)

• select operating system Windows x86-64

• click the big button “DOWNLOAD NOW”

• once the .exe file is downloaded, open it to go through the installation process. It will ask for a port - use
default 5432 You will also need to create a password for the database administrator

• At some point, it will ask for add-ons. Select EDB language pack (includes perl), and optionally others such
as apache/php and apache/httpd

7. Creating the database on the W7 computer

• open the pgAdmin program

• double-click in the tree on the left postgresql 9.4(localhost:5432) and enter admin password

• the tree will now list the existing databases, etc.

• click on Login Roles to create a database user:

– “properties tab; Role name: enter a name, say “xxx”

– “Definition” tab; password, uncheck expiration data

– “Privileges” tab: check login, inherits, can create DB

– “SQL” tab: should list SQL command to be executed

• click on databases in the tree, then Edit tab - New Object - Database

B. Operating-System Setup

1. USB

USB devices do not have firm associations between the physical device and the names by which they known to
the OS. For example, USB serial ports on a Linux system tend to appear as /dev/ttyUSBx, where x is a sequential
number in the order the ports were plugged in. If they are already plugged in when the computer is started, they
may come up in any random order. This uncertainty can be resolved by assigning them symbolic names that are
tied to unique characteristics, such as serial numbers. To do so, create a file 80-SerialPort.rules (or some name
like it ending in .rules) in the directory /etc/udev/rules.d/ with contents that look like this:
#FTDI

ATTRS{idVendor}==’’0403’’,ATTRS{serial}==’’A1025EFI’’,ATTRS{idProduct}==’’6001’’,MODE=’’0666’’,SYMLINK+

=’’DCH-usb’’,GROUP=’’dialout’’

ATTRS{idVendor}==’’0403’’,ATTRS{serial}==’’FT3W5E11’’,ATTRS{idProduct}==’’6001’’,MODE=’’0666’’,SYMLINK+

=’’K6485-usb’’,GROUP=’’dialout’’

#prolific

ATTRS{idVendor}==’’067b’’,ATTRS{idProduct}==’’2303’’,MODE=’’0666’’,SYMLINK+=’’K2400-usb’’,GROUP=’’

dialout’’

The identifying specifics of each USB device (vendor ID, serial no., etc.) can be found by running the command
udevadminfo--name=/dev/ttyUSB0--attribute-walk>capturex and then looking for those items in the file
capturex. Once that file is written, run sudo udevadm control --reload-rules

22

For more on writing udev rules, see for example http://www.reactivated.net/writing_udev_rules.html
Then, make sure a group dialout exists on the computer and make the current user a member of that group.
To view all groups on a system: getent group
To create a group: sudo groupadd <group name>
To see if a user is a member of a group: groups <username>
To make a user be a member of a group: sudo useradd -G <group name> <user name>
For groups in UNIX, see for example https://www.howtogeek.com/50787/
add-a-user-to-a-group-or-second-group-on-linux/

C. run installation.py

a. The master installation script run installation.py performs the following tasks:
read the file ./setup
call: ./installation/run installation.py
call: ./<customFilePath>/run installation (where customFilePath is given by the file “setup”)
copy: cp ./<customFilePath>/C3PO/* ./C3PO/
copy: cp ./<customFilePath>/user/* ./user/
call: ./C3PO/generatePVlist.py
call: ./C3PO/SystemSetupAll.py
copy: ./C3PO/userinfo ./user/

b. The subsidiary installation script ./installation/run installation.py will:
read the file ./../setup
attempt to create the database (“fails” if already exists)
mkdir <userdir> (from setup file: ./user)
mkdir <systemdir> (dto ./C3PO)
mkdir <logdir> (dto)
mkdir <datadir> (dto)
copy: cp ./coreScripts/* <systemdir> (typ. C3PO)
create file userinfo
create file admindefs
insert the shebang (from setup file) in all .py files in systemdir and userdir

c. The subsidiary installation script ./CustomFilesForXXX/run installation.py will:
read the file ./../setup
append to file admindefs

d. The subsidiary installation script ./C3PO/generatePVlist.py will:
Create a file Pvs Defs user and populate it with PV information from all files with names conforming to the
regex pattern Defs.*$, i.e., ending in Defs(something) (except, of course, itself)

e. The subsidiary installation script ./C3PO/SystemSetupAll.py will execute all files with names conforming
to the regex pattern Defs.*$ These files must have a shebang pointing to setupDB.py, the program that generates
all database entries.

D. Database definition files Defs*

The database is populated from information contained in files ending in the regex pattern Defs*$. These files
must have the following structure (see example below):

• the first line must contain the shebang #!./setupDB.py to be properly called by the installation script
./C3PO/SystemSetupAll.py (see above).

• the next line must contain a hash-mark followed by the names of the fields in the respective database table,
the name of which is derived by lopping the ending Defs*$ the current file.

• the third line must contain a comma-separated list of numbers for the field sizes in the database table. The
number of comma-separated items must be the same as the number of filed names in the line above

23

• if the next line contains the phrase drop old table, then the respective table is dropped (removed), then
re-created empty, then filled with the entries of the current file. Otherwise, the old table is overwritten,
possibly leaving old entries in there.

To give an example, here are some lines from file interfaces Defs:
The first 5 lines are:
#!./setupDB.py
name, dnPort, upPort, driver, start, call, daemon, comment
32, 64, 64, 32, 128, 256, 32, 256
drop old table
comment:

E.

1. Database Manual Access

The database can be accessed manually with the command psql -d xcap. It is helpful to do so now and again
just to check on how the control software has modified the database. Databases that exist for the current user are
listed with the command (on the psql prompt xcap=>) \d. The structure of table pvs is displayed with \d pvs;.
All entries in table pvs can be shown with SELECT * from pvs.

F. Experiment Setup

To set up an experiment, one needs to create the database structure. This could be done manually on the
postgrsql prompt, but it would be a very tedious process. Instead, one can run a setup python script. However, to
alter an existing setup, for example, to set-up a new device, may be easier to do on the psql command prompt.

Entries into the table are made with the INSERT INTO command at the database command prompt. For
example, INSERT INTO pvs (pvname,type,drname,sectable) VALUES (‘htr.mva’, ‘W’, ‘DCH’, ‘DCH’);

XV. EXAMPLE

Suppose the experiment requires to drive three motors using the DCH motor controller from Dragonfly Devices,
as well as reading images from a CCD camera, and controlling a temperature. The motor driver is connected to
serial port /dev/ttyUSB0, the camera requires a call to a program that handles exposure, readout, etc., and the
temperature controller is connected by RS485 bus to an ethernet-serial bridge. Assume the motors are called htr,
vtr, and foc, and we use a somewhat structured naming convention for the pVs (this is not necessary, but it is
helpful). For each motor, we want to have PVs to send it to an absolute position, to a relative position, read back
the current position, and read back the limit-switch status (many more PVs may be desirable).

Then, for each motor, one would require at least PVs to send it to an absolute position

A. PV definition

Each PV is represented in two database tables, the overall listing of PVs in a table called pvs, and a device-
specific table of some suitable name. So, for example, if there are two pA meters of identical make, then there
might be tables called pameter a and pameter b, and all PVs relating to a particular pA meter are listed in the
respective table. The populate these tables, one has to write a file that lists in each comma-separated row a PV
name and other information togo with it. Just what information that is depends on the specifics of the device.
The first line of this file needs to have a shebang init that indicates a program that reads the PV info in the file
and populates the database with it. The name of that file has to be <name-of-database-table> Defs.

24

XVI. INSTALLATION

To install C3PO for a particular experimental setup, one needs to do the following:

• Create or edit files in the /CustomFilesForXXX/C3PO/ and /CustomFilesForXXX/user/ directories, where
XXX is the name of the experimental setup. These are meant to hold any experiment-specific scripts, setup
files, etc., that are not part of the standard installation. The files in /CustomFilesForXXX/user/ are meant
to be accessible to the experiment operator, and the ones in /CustomFilesForXXX/C3PO/ are not.

• edit the file /setup to define the name of the database, the path to the experiment-specific directory /Cus-
tomFilesForXXX/

• run the script /run installation.pl This script reads the file /setup, and then calls the script /installa-
tion/run installation.pl (same name, but one directory down), which sets up the directory structure, copies
the core scripts, and modifies them as needed. Then, /run installation.pl copies the experiment-specific
files from /CustomFilesForXXX/C3PO/ and /CustomFilesForXXX/user/ to their respective locations, and
finally calls scripts /C3PO/SystemSetup all and /C3PO/UserSetup all that create database entries, etc.
/C3PO/SystemSetup all is part of the core installation, and /C3PO/UserSetup all must be supplied in the
/CustomFilesForXXX/C3PO/ directory by the person who sets up the experiment.

A. The file ˜/setup

The file /setup contains information that guides the installation process. The following entries need to exist:

key example value explanation

username: xxx UNIX user name

database: xcap name of the postgresql database

dbpasswd: Xcap! password for access to the postgresql database

customFilePath: CustomFilesForXcap the path referred to above as CustomFilesForXXX

user directory: ./../user/ where the operator-accessible scripts are to go

system directory: ./../C3PO/ where core scripts are to go

data directory: ./../DataFiles/ where data files go

error directory: ./../logs/ where errors are logged

logging directory: ./../logs/ where logs are to be written

precision: 1000

tracebacklimit: 2

shebang: !/usr/bin/python the shebang line at the start of all python scripts

hostname: localhost

pemfile: ./../C3PO/test.pem

crtfile: ./../C3PO/test.crt

parameter separator: \xaa

mode: simulation, debug

If the keyword “normal” appears in the mode line, C3PO will actually move actuators and read detectors
Only if the keyword “” appears in the mode line will C3PO actually

B. Installation Example: X-ray Optics Characterization

The installation comprises of three motor drivers with four channels, each, and a cooled CCD camera. The path
for CCD image data is /ImageFiles/, and it is specified through the admin database table

C. Installation Example: Adding CAEN N1470 device

The following steps are required:

25

• create the file CustomFilesForXXX/C3PO/CAEN1470.py. This is the driver file that handles the
communication with the device. It can be copied from an existing driver file, such as Keithley24xx.py, and
then modified in the section that says “device specific”

• create the file CustomFilesForXXX/C3PO/setup CAEN1470.py. This python script gets called in
the installation process and populates the database with stuff specific to the device, which it reads form a
Defs file, see below. It can be copied from another setup file, and modified in the sections that say “specific”

• create the file CustomFilesForXXX/C3PO/CAEN1470_Defs. This file is read by the setup script (item
above), and contains the information that is written to a dedicated table in the database, which is created
by the setup script. The format of this database table, i.e., the number of columns and their type, meaning,
etc., is not determined by the C3PO standard, and can be chosen according to the needs of the particular
device. Each row in the table contains all the information that is required for one PV.

• if the communication interface is USB, then one will want to define an alias name for the interface, and enter
that into the interfacedefs file. See above for the purpose of this

• modify the file CustomFilesForXXX/C3PO/UserSetup all.pl, by adding a line sys-
tem($thisdir.”setup CAEN1470.py”); this tells the installation scripts to include in the inastallation
the PVs,e tc. related to the device

• modify the file CustomFilesForXXX/C3PO/UserPvsDefs to enter all the PVs for the driver

1. The Device-Specific Database Table

In this example of the CAEN 1470 device, the following columns are required in the database table:

• PV name; for each of the 4 channels in the CAEN, there are multiple PVs, such as for setting a voltage,
turning the channel on/off, etc, as well as for reading from it

• PV type (R/W/S)

• action; this is a string that tells the driver program what to do with this PV

• interface name (as known to the OS, or an alias to be resolved through the interfacedefs file)

• board: which CAEN device in a daisy chain

• channel number (0..3)

• communication parameters; these don’t really need to be given here because the CAEN talks only with
specific parameters (9600, 8N1, xon/xoff), so they could be hard-coded into the driver. FOr consistency with
other devices, they are provided through the database, anyway

• comment

XVII. ADDING A NEW DEVICE

• write a device driver (if not already available)

• define PV names to represent the functionality

• define name for database table with PVs for this device

• create entries with these PVs in file UserPVs Defs, where each line has entries for: PVname, type, driver,
table, side1, side2, side3, side4, comment

• create file >device-name> Defs and enter lines for the PVs in a format understood by the device driver

• write a program (to be entered in the shebang of the >device-name> Defs file, that reads it and populates
the database from it

26

A. Writing a Device Driver

A device-driver program must accept the following command-line parameters:

• argv[1]: action (ID—VER—DATE—AUT—DBT—EXEC).ALl but the last

XVIII. SPECIFIC INTERFACES

Interface and devices connected to them are defined in the database-setup file interfaces Defs, which is copied
into the interfaces database table when the installation script run setup.py is run. This file contains entries
for physical interfaces on the host computer, such as serial ports, USB ports, LAN, etc. - basically any device
that would have an entry in the /dev directory of a linux system. Each of these entries has a unique name,
which can be used directly to access the corresponding device (by being defined as the interface in the setup file
for a device-sepcific database table DSDT). However, usually, there are additional named entries, which refer to
actual interfaces. This indirection facilitates the assignment of physical interfaces to devices, which is all done
in the interfaces Defs file instead of scattered device-definition files. More importantly, it allows for additional
parameters, protocol wrappers, etc. to be passed to the interface drivers.

It is possible, and quite usual, for several device entries to refer to the same interface. The most common
occurrence of this multiplicity is when an interface is not connected directly to a device, but rather to another
interface, such as a serial-to-GPIB converter. Then, multiple devices would be on the same GPIB bus (each with
its own GPIB address), but as far as the host computer is concerned, they are all on the same interface (the serial
port). In order to handle multiple devices on one host-computer interface, each device entry contains wrapper
information that is meant for the secondary interface on the host-computer interface.

The database-setup file contains entries in the following columns: name, dnPort, upPort, driver, start,
call, daemon, comment
with the following meanings:

• name is the name of a device or an interface (depending on the type of entry),

• dnPort is the communications downlink. For device entries, this is the name of the corresponding interface,
which is given in another entry in interfaces Defs For interface entries, this is the physical interface in the
computer, such as a serial port.

• upPort is the communications uplink, i.e., where in C3PO communication originates from. For device entries,
this field may be empty because device communication always originates from the C3PO-internal program
intAcc.py. There may be an entry like intAcc in this field, but that is ignored and serves only to remind
the person editing the file of how the communication flow goes. For interface entries, upPort is the port that
C3PO uses to access the interface, i.e., the TCP port for SSL daemons.

• driver is ignored for device entries and is the name of the daemon program in the case of interface entries

• start is ignored for device entries and contains startup parameters for the daemon process, such as commu-
nications parameters for a serial port

• call is ignored for interface entries and contains wrapper information for device entries

•

For example, a serial-to-GPIB converter needs to be given specific commands to write to and read from the GPIB
bus, as well as the specific GPIB address of the device. The wrapper information contains four items, which may be
names of command-line programs to modify strings or perl-style regular expressions, which may contain keywords
recognized by the interface driver. They are separated by a character given as the first non-whitespace character
of the wrapper string. If the next two characters following that separator definer are non-whitespace, they are
interpreted as the opening and closing limiters for a command-line function call to modify a string. Otherwise,
these are by default the opening and closing parenthesis. Typically, the item separator would be the semicolon,
but there may be a case where the semicolon is needed as part of a command for the secondary-interface driver.
In such a case, one would use another character as the separator. What C3PO does is to split the string with
the wrapper information on the character that is the first non-whitespace of the wrapper string. This yields four
substrings (some or all of which may be empty), each of which can contain zero, one, or more function names (in
the above-mentioned enclosing limiters) or regular expressions. These multiple sub-items may be defined in an

27

entry for an interface driver, or may be assembled from multiple indirections of protocol wrappers leading to an
interface driver. In the latter case, the sub-items are separated by a non-printable character defined in the C3PO
setup file. Here are two examples:

a. Wrapper for an Agilent E2050 LAN-GPIB converter: This wrapper would be contained in the entry for a
device that is referenced to the SSLlanGPIB interface driver written for Agilent E2050 LAN-GPIB converters: ;
/__GPIB__/9/ ; ; ;
Here, the leading semicolon identifies the semicolon as the field separator for the wrapper information. The
next field “all” contains a regular expression saying to replace every occurrence of __GPIB__ (internally in the
SSLlanGPIB driver) with a “9”. In other words, this tells the SSLlanGPIB driver to insert the GPIB address 9
where appropriate, where __GPIB__ is a keyword recognized by the SSLlanGPIB driver program. The other items
in the wrapper information are empty because the SSLlanGPIB driver is rather specialized, so it knows what else
to do.

b. Wrapper for a National Instruments serial-GPIB converter: The serial driver is much more general-purpose
than the SSLlanGPIB driver. It is therefore necessary to tell it more about how to do, for example, GPIB
communication through a National-Instruments serial-GPIB converter. The wrapper for this configuration would
be:
;/__GPIB__/9/;/(.*)/wrt#__NWRITE____GPIB__\r$1\r/;/(.*)/rd#__NREAD____GPIB__\r\n/;/\x00+.*// $
Following the semicolon to set the item separator, there is, again, the regular expression for inserting the GPIB
address 9 for the driver-internal keyword __GPIB__. The next item is a regular expression to prepend the string
wrt__NWRITE____GPIB__\r, as well as append \r to any sting to be written on the GPIB bus (you need to be
fluent in perl-style regex to understand what is going on here). The prepended and appended parts are meant for
the serial-GPIB converter, and are not written out to the GPIB bus. The driver program will konw how many
bytes to write and insert that length for __NWRITE__, and it will also do the regex replacement of “9” for __GPIB__.

If the secondary interface is changed out, then the references from devices to interfaces need to be modified, as
well as wrapper information.

A. RS232

Communication through RS232 or RS422/RS485 serial ports is handled by SSLs232 daemons. For each open
port, one instance of the daemon is running, but each with its own unique TCP/IP port. Thus, each serial port
presents itself to the rest of C3PO as a TCP port. An RS232/RS422/RS485 port may be connected directly to an
instrument, or there may be another interface device, such as a serial-to-GPIB interface. Some instruments may
also have a USB connection that goes to a built-in USB-serial converter. To the operating system, such a USB
connection appears as a serial port, and is thus handled by the SSLs232 interface daemon. As stated above, each
device is represented by an entry for itself, and one for the interface.

The entry for the interface has the following columns:
int.name, OS device name, TCP/IP port, SSLs232.py, comm. pars, , , , comment
For example:
SSLs232 3, /dev/ttyUSB2 , localhost 12347, SSLs232.py, 9600 8 N 1 xoff 1 0.1, , , # comment
Here, SSLs232 3 is the C3PO-internal name of a particular serial port, known to the operating system as
/dev/ttyUSB2. The daemon is to run on the same computer where C3PO is running (localhost), and is to use TP
port 12347. The program for the daemon is SSLs232.py, which is started automatically upon first access to the
serial port, and which will then run continuously in the background, listening for communicaiton requests. It will
stop either when told so explicitly by writing a “1” to the PV daemon.stop, or if stopped by the operating system
(or if it crashes). Recovery from a crash is described below. The next entry defines the communication parameters,
here 9600 baud, 8 bits, no parity, 1 stop bit, using the xon/xoff protocol and timeout parameters 1 and 0.1. The
first of these tells the daemon how long to wait for the first byte of a reply after a service request (here 1 s). The
other one tells it how long to wait for each subsequent byte. It is assumed that a device may take some time to
process a service request (here up to 1s), but then, once it begins transmitting an answer, the bytes follow one
after the other. A typically much shorter break (here 0.1s) indicates that the device is done transmitting, so ther
is no need to wait for the longer timeout used at the beginning of the reply string.

Another entry in the database-setup file makes the link to the device connected to the interface. This entry has
the following columns:
device name, interface name, (ignored), (ignored), (ignored), wrapper info, (ignored), comment.
The (ignored) columns play a role

28

XIX. NOTES ON SOME DEVICES

A. Metrabyte/Keithley/Omega/DGH transmitter modules

These devices use serial communiation through either RS232 or RS485 (depending on the model number). For
RS232/RS485 wiring, refer to document Omega M0662.pdf. The RS485 devices will also communicate with RS232
(see manual), but this is recommended only for setup, not for normal operation. As long as the default pin is
connected to gnd, the device is in a standard state of communication settings: 300 baud, 8N1, will accept any
device address. The settings for normal operation can then be changed with the SU command with the following
steps:

1. start serial-communications program, such as minicom and set communication parametes to 300-8-N-1 and
no handshake

2. ground the default pin

3. type #1RS to test communication and read the current setup The response is a string like *1RS310200408A,
where 31020040 is the current setup and 8A is a checksum

4. compose the setup string consisting of four hex-coded bytes: byte 1 is the unit address; for example a unit
address of one would be hex for ASCII ‘1’, i.e., 31;
byte 2 configures linefeeds, parity , baudrate. Refer to table 5.2 in the manual file M0662.pdf. For lf, no
parity, normal addressing and 9600 baud, byte 2 is ‘82’, for 19200 baud it is ‘81’, for 38400 baud it is ‘80’,
for 57600 baud ‘89’, and for 115200 baud ‘88’;
byte 3 sets alarms - here we will set all to 0
byte 4 sets the displayed digits and filter time constants - refer to table 5.4. To display all digits and apply
no filtering, the byte is C0. The complete setup string is then for this example (9600 baud): 318200C0

5. enable writing to the device by typing $1WE (write-enable, this is active only for one write op)

6. type the setup string $1SU318200C0 (....00C2 for 1712 dig.IO)

7. type $1RS to read-back the setup information$

8. power-cycle

For straight-out serial communication, the entries into the interfaces database table (file interfaces Defs) are
rather straightforward, for example: M3171, SSLs232 10, , , , ;() / / ; ; ; , 0, # SSLs232 10, /dev/ttyUSB0 ,
localhost 12360, SSLs232.py, 9600 8 N 1 xoff 1 0.1 fa wrd0.2, , , # comment

When connected to an EIS-W ethernet-serial bridge, an RS485 unit will now respond. For example, if the unit
address was set to 2, comm. pars to 9600-8-N-1, etc. (see above), and if a telnet connection has been made to the
bridge at port 2000, then typing $2RS will respond *328200C0

B. Agilent E2050A

The Agilent E2050A/B is an internet-GPIB bridge, which is rather straightforward to use with C3PO. The
device is represented in the interfaces Defs file with a line, such as:
SSLlanGPIB_0,192.168.1.2400gpib0,localhost12340,SSLgpibAg2050.py,,,,#AgilentE2050
where SSLlanGPIB_0 is the name by which the interface device is known to C3PO (one unique name for each device
in an installation), 192.168.1.241 is the IP address of the device, gpib0 is its symbolic name required by the VX11
communication libraries, and localhost 12340 are the TCP host and port under which the SSLgpibAg2050.py
driver runs. The IP address and the symbolic instrument name are assigned to the device as follows (manual
HP E2050 LAN.pdf, p. 50):

• power on

• press the recessed “Config Preset” button on the rear. The “Conn” LED on the front side will now flash
slowly, and the IP address will be at its default 192.10.0.192

• make sure the computer has access to the 192.0.0.255/24 network

29

• type telnet 192.0.0.192 (return) to connect to the device

• a listing of possible of commands will be displayed

• To set the IP address, type ip: xxx.xxx.xxx.xxx (address)

• To set the symbolic instrument name, type hpib-name: <name>

• type exit to save and exit telnet

• power-cycle to activate new IP address

C. Agilent E5810A

The Agilent E5810A/B is an internet-GPIB bridge. It is a lot larger than the E2050 and provides some extra
functionality over the latter. In particular, it has a built-in web server where one can configure parameters and
test communicaiton with GPIB attached instruments. It is also a lot more expensive. In C3PO it is configured
and used in the same way as the E2050, except for this detail: In order to set a default IP address, press the
recessed “preset” button on the front side for more than 10 seconds (pressing less than 10 seconds will only reset
the password for the web server). The device will then re-boot and, after some time, will display its IP address on
the LCD display. From this point on, configuration proceeds as described for the E2050.

D. National Instruments GPIB-ENET

The NI GPIB-ENET is an ethernet-GPIB bridge. https://sigrok.org/wiki/National_Instruments_
GPIB-ENET It uses proprietary NI software and is currently not supported under C3PO. Apparently, the device
uses rar to get an IP address. On ubuntu:

• install rarpd on the linux box

• create or edit a file /etc/ethers with a line containing the MAC address and intended IP address, such as
00:80:2F:FF:41:C9 192.168.1.61

• sudo /usr/sbin/rarpd -a

• set all DIP switches to “off” (up) and connect ethernet to GPIB-ENET (see below for switches)

• turn on the GPIB-ENET device

• telnet <IP address > 5000

• once the IP address has been obtained through rarp, switches 5 and 6 can be turned on to continue using
that IP address without rarp

The DIP switches have the following meaning (http://www.ni.com/pdf/manuals/321243d.pdf, p. A-1): 1-4
reserved (need to be off), 5: off/on: auto/manual IP assignment, 6: off/on: obtain IP addr./use stored IP addr.,
7: off/on: normal/modify firmware mode, 8: off/on: normal/factory test

E. Keithley 487

The Keithley 487 is handled by the driver Keithley48x.py . The following list contains the commands that the
driver accepts (capital letters), commands that the Keithley instrument will receive (compare Keithley manual
Table 4-1), typical implementations as PVs (where k487a is an example of an instrument name), and parameter
descriptions (P means parameter):

• LIST, k487a.list . This command is not sent to the intrument, but rather lists all the PVs defined for this
instrument.

• RESET, k487a.reset P, if P==“1” or P==“on” (upper case also ok) send command “O0L2X” to the instru-
ment, meaning “put voltage source intpo standby” (O0) and “revert to saved defaults” (L2), otherwise do
nothing

30

• INIT, k487a.init P, if P==0 send command “L0X” (return to factory default and save), if P==1 send
command “L1X”(save present state as default), if P == 2 send command “L2X” (return to saved default),
otherwise do nothing (instrument commands L3..L6 are not implemented)

• HKEY, k487a.init P, for P an integer between 1 and 17 (incl.), send command “HPX” to “hit” a key on the
front panel (see manual), otherwise do nothing

• DISP, k487a.disp P, display message “P” on front The message is cleared and the display is returned to
normal with the BRGT command (next below)

• BRGT, k487a.brgt P, if P == 0, display at full brightness, if P==1, dim, if P==2, off (except power button),
if P==”C” cancel displayed message

• TEST, k487a.test P, if P==0,1 perform test 0 or 1 (see manual), otherwise do nothing

• BUFS, k487a.test P, if P==1, .. 512, set data buffer size to P, otherwise do nothing

• DFOR, k487a.dfor P,

• ZCHK, k487a.zchk P, perform zero check for P==”2” or P==”zchk do”, enable zero correction for P==”2”
or P==”zchk ena”, disable zero check for any other parameter values

• RANG, k487a.rang P, set range in Amps, will choose among available ranges of 2e-9, 2e-8, .. 2e-4 A

• FILT, k487a.filt P

• AVER, k487a.avg P, if P == “1”, “line” (or upper case), send command “S1X” for line-cycle integration,
otherwise send “S0X” for fast integration

• INTV, k487a.intv P, set the time interval between triggers

• TRIG, k487a.trig P, if (regex perl style) P = m/[MS][TGXEO]/, set trigger condition to Multiple/Single
and to trigger on Talk, Get, X, ext. trigger, or operate voltage source (487)

•

•

•

•

•

F. Omega CNi-Series temperature/process controllers

Before a controller can be used, it must be set up. The set-up parameters are specified with the commands listed
below. These do not write directly to the controller, but only to the database. The “init” command, i.e., writing
to the PV TconX.init (see below) reads the setup parameters from the database and sends them to the controller.
This is illustrated in the example in Sec. II.

1. Input

The controllers accept thermocouples, platinum resistors, or process voltage/current signals on their input.

PV name type value description

TconX.input W RTDxxxx , xxxx= 100, 500, 1000 set to RTD input 100/500/1000 Ohm

TconX.input W 392.2|392.3|392.4|385.2|385.3|385.4 type of resistor (default 392.2)

TconX.input W 100mV|1V|10V|20mA set to process input

TconX.input W J|K|T|E|N|DIN-J|R|S|B|C set thermocouple

TconX.input.rb R read input register in database

TconX.ainput R read input register in controller

31

An RTD can be specified in two steps, i.e., with the command wpv.py RTD1000, wpv.py RTD500, wpv.py
RTD100, or just wpv.py RTD for RTD100, and then the type of resistance curve, i.e., wpv.py 392.2, etc., or it can
all be done in one step, for example wpv.py RTD100-392.2. What matters is only that it is a single string containing
the pertinent substrings. The type-of-resistor PV only modifies the bits for the type of resistor or thermocouple,
but does not change to RTD. One should not specify this parameter after setting a TC because it will affect the
type of TC.

2. Output 1

Output 1 is typically used for controlling a feedback loop, i.e., for example, to control an SSR. Alarm 1 must be
turned off for output 1 to be useable.

3. Output 2

Output 2 is typically used for alarm, emergency shutoff, etc. Alarm 2 must be turned off for output 2 to be
useable.

4. Alarm 1

5. Alarm 2

G. Omega iServer Microserver

1. EIS-W

The EIS-W has a default IP address of 128.100.101.254/24, which is activated by sliding the 2nd microswitch
on the bottom to “on”.
Then http://128.100.101.254, select “iServer” from the drop-down manu and then click “Update”. Click “Login”
and use the default password 12345678 or the admin-login password 00000000
First click “Access control and set the IP address, then power down the EIS, deselect default on the dip switch,
and power on. Then click “Configuration” and select the serial-communication parameters. For server type, select
“slave” and 0 sockets. Remote access “enable”, TCP port of 2000

Alternatively, telnet 128.100.101.254 2002 or

[1] This is an example of the point made in the introduction that much of C3PO is not present in program code but rather
in the database structure and contents.

[2] there is nothing in there that would prevent a scan from triggering itself, but it would not be wise to do so.

