	 EMMA
	 October 4, 2011

EMMA LabView Objects
Sergey Kotelnikov

1. How to write a new class

It is proposed that hardware modules to be described as objects using LabView classes. This helps to encapsulate internal logic and to inherit common functions. Some library classes are available: Device, Generator, Motor, Servo Motor, Linked Motors (see below in Library Classes). To write a new class, follow the recommendations:

· A new class must be at least a subclass of the Device class

· All public methods must override those of the Device class. It will facilitate preparation of the class wrapper (see below)
· Combine all new setters under Set Params method and call the parent method at the very end, as eventually the parent Device method will throw an error on an unknown parameter.
· Combine all status information under Read Status method, which calls the parent method first and then adds new parameters as Strings to the output array.
· Any class-specific logic is supposed to be hidden in the class methods (especially in those, which support the running state).

· In each method, retain an initial error if any. Terminate a new Error chain with Verify Error method from the Device class.
· Save a new class and its methods in a separate folder.

2. Wrapper to a class
To facilitate a general access to a class, it must have a wrapper, which uses Queues to get a request and to send back a response. A wrapper for a class has a unique name (for example, ServoQueueWrapper.vi), which is also the name of the Queue for requests to the class. Synchronous responses from the object are sent back through a Queue, which name is provided as Sender String in the request (see below). Asynchronous responses (during the Run state, for example) are sent back to a Sender that runs this object. Default time of asynchronous responses is 1 sec, so it serves mostly for monitoring purpose.

The wrapper keeps the track of all objects of the corresponding class and it is able to create, access, run, stop and delete any single object. All objects within a wrapper must have unique names.

A wrapper for a new class can be easily derived from any existing wrapper example by substitute of the class object variable only.
3. Access protocol

Any request sent to a wrapper queue is a Cluster with the following structure:

· Name as String (a unique object name)

· Method as String (a unique method name, like Create, Delete, Exit, etc.)

· Param as array of Strings (method parameters)

· Sender as String (a Queue to send response to)

Most of the methods have no parameters, while some (Set Params), have them like Param [0] is the name of a control, Param [1] is the value for the control. There is a special case, which should be used in a standard way:

· Create method requires parameters:

· Param[0] is a string path to a wrapper VI

Any response got from a wrapper has the same structure as a request. It repeats the Name, the Method, and the Sender of the request. The Param contain might have any information: from a general one (OK, error description) to a specific (status description of the object).
The structure of Request/Response could be found as Strict Type Definition in Object Queue Element.ctl.

4. Test & Deployment tool
[image: image1.png]
To facilitate testing and deployment of a class and its wrapper inside LabView environment, as well as to provide a communication within classes, one can use CmdToQueueWrapper.vi, which starts the wrapper for the class, creates a separate request Queue for every instance of the class, generates requests, and stops the wrapper if all the objects of the corresponding class are deleted. It can keep track of any number of wrappers, and stop them all on exit. Every object of any class must have a unique name. Below are some examples of this tool:
[image: image2.png]
5. Library Classes

Use one the following classes as parent for a new one:

· Device (parent class for any general hardware object)

· Private data:

· Name as String

· Mode as Enum: Synch, Asynch
· Simulation as Cluster

· Active as Boolean

· Task as Reference

· Path as String

· Enabled as Boolean

· Public methods (all have standard input: error in and standard output: error out):

· Abort (to abort the current run)

· input: Device in as Device

· output: Device out as Device

· Create (to initialize the object during creation)

· input: Device in as Device, Name as String

· output: Device out as Device

· Delete (to clean-up before object deletion)

· input: Device in as Device

· output: Device out as Device

· Exit (to clean-up before exiting)

· input: Device in as Device

· output: Device out as Device

· Is Exist (to find the object in an array)

· input: Device in as array of Device, Name as String

· output: Exists as Boolean, Index as Integer I32

· Read Data (to read array of doubles)

· input: Device in as Device

· output: Device out as Device, Data as array of Double

· Read Name (to read the name)

· input: Device in as Device

· output: Device out as Device, Name as String

· Read Simulation (to read simulation parameters)

· input: Device in as Device

· output: Device out as Device, Simulation as Simulation cluster (Active, Task, Path)

· Read Status (to read the status)

· input: Device in as Device

· output: Device out as Device, Status is array of String

· Run Asynch (to support asynchronous runs)

· Run Asynch (to process asynchronous run)

· input: Device in as Device

· output: Device out as Device, Found active is Boolean, Found running as Boolean

· Run (to start a new run)

· input: Device in as Device

· output: Device out as Device

· Set Params (to set controls’ values)

· input: Device in as Device, Control as String, Value as arrays of Strings

· output: Device out as Device

· Verify Error (to standardize errors)

· input: Device in as Device, Alarm as Enum (ERROR or WARNING), Object name as String

· output: Device out as Device

· Generator (general generator class as a subclass of Device)
· Private data:

· Amplitude as Double

· Frequency as Double

· Samples as Integer (I32)

· Data as Array of Doubles

· Public methods (all have standard input: error in and standard output: error out):

· Read Data (overridden)
· Read Status (overridden)

· Set Params (overridden)
· Motor (general motor class as a subclass of Device)
· Private data:

· Brakes ON as Boolean

· Position as Double

· Speed as Double

· Public methods (all have standard input: error in and standard output: error out):

· Read Status (overridden)
· Servo Motor (servo motor class as a subclass of Motor)
· Private data:

· PID Config as Cluster

· Precision as Double

· Max Speed as Double

· Target Pos as Double

· Public methods (all have standard input: error in and standard output: error out):

· Set Params (overridden)

· Read Status (overridden)

· Protected methods (all have standard input: error in and standard output: error out):

· Distance to Target (to estimate run progress)

· input: Servo Motor in as Servo Motor

· output: Servo Motor out as Servo Motor, To Target as Double
· Linked Servos (linked Servo Motors class as a subclass of Device)
· Private data:

· Max Deviation as Double

· Motors as arrays of Strings

· Queue as String

· Public methods (all have standard input: error in and standard output: error out):

· Abort (overridden)

· Create (overridden)

· Read Status (overridden)

· Run Asynch(overridden)

· Run (overridden)

· Set Params (overridden)

· Protected methods (all have standard input: error in and standard output: error out):

· Decode Motor Status (to decode status from Motors responses)

· input: : Linked Servos in as Linked Servos, Response as Array of Object Queue Elements

· output: Linked Servos out as Linked Servos, Status as Array of String

· Synch Request To Elements (to send request to Motors and to get a response)

· input: Linked Servos in as Linked Servos, Request as Array of Strings

· output: Linked Servos out as Linked Servos, Response as Array of Object Queue Elements

6. How to write a simulation driver

Simulation driver must be an independent continuously running process. The following rules are mandatory for any simulation driver
· It has an 'Exit' control for exit

· It has a 'Running' indicator to see whether the driver exited

· It has an 'Enable' control for driver activation/deactivation

· It has an 'Active' indicator to see whether the driver is performing a request or in a waiting state
Workflow 2 of 5

