	 EMMA
	 October 17, 2011

Scripting in EMMA
Dana Walbridge

1. Introduction

Scripts in EMMA serve the same purpose as checklists do in CHISOX. They provide a way to “program” measurements. However, unlike checklists, EMMA scripts should be easy to create, and, with the implementation of parameter and calibration sets, more reusable than checklists. This hopefully will result in fewer scripts than checklists.

The scripting language has yet to be determined. It may be a standard one that exists, like Python. Or it may be one created locally, customized to the special needs of our measurement system. Whatever is chosen, it will need to perform the following types of functions outlined later in this note. As a result, examples of script segments shown in this document do not necessarily use actual parts of the scripting language, but should reflect the general functionality needed in constructing measurement programs for our test and measurement environment.

Although the scripting language may or may not be object oriented, it will at least be object based as some if not all of the values it uses will likely be objects.

2. Basic Functions

Concept of Instruments, and their EMMA counterpart

CHISOX uses what are called virtual instruments to define a specific setting or measurement. For instance, the harmonics_flux_and_orientation virtual instrument refers to the set of devices used to obtain flux data from a rotating coil probe. The x_position virtual instrument refers to those devices that set and/or readback the x position for a probe. There are many other virtual instruments that refer to other measurement functions such as setting currents, reading currents, reading temperatures, etc. Installed instruments in CHISOX actually identify which specific devices are use to perform the function. CHISOX also defines conceptual instruments, which identify the types of hardware products used. The construction of installed instruments uses the conceptual instrument pattern in defining the actual hardware devices.

EMMA needs to use similar constructs which are accessible from within the script. Otherwise, how will the script know what current or position to set, or what temperature sensor to read? When performing these functions, the script needs to know what devices to use to set the z position, or to read the y field value. We may not need “conceptual instruments”, but we will need some way to identify what devices to use from within the script without actually listing them all in the syntax. As in CHISOX checklists, checkitems that do settings or read data refer to “virtual instruments” in the script. Although a synonym has not yet been chosen, for this document, I will call them “tools.” EMMA scripts can basically do the same. However, I would recommend that measurement functions that use the same hardware devices (with the exception of different channels and perhaps different sensors) use the same tool. In CHISOX, each instrument performs only one function.

Parameter Sets

It is hoped that creating parameter sets that the number of scripts used for measurements can be kept to a minimum, especially for production type measurements. Thus, aside from the initial effort in designing and creating the scripts used for test, that the primary effort in creating a new measurement will be in the definition of the parameter sets.

Scripting commands

Variables

Once parameter and calibration sets for a particular measurement have been defined and assigned to a script, the script needs to be able to access them. Part of the parameter set should include which “tools” the script will access. Each tool will have its own parameter/calibration set, and the code under the script will know about this. However, some things will need to be set from within the script. This can be done by assigning values to variables which are used later, or setting the value directly when accessing the tool.

first_x_position = -5.0
	.
	.
	.
set(x_position_tool, first_x_position)

set(x_position_tool, -5.0)

Loop Values

Most of the work of scripts will happen within loops (setting currents, positions, coil configurations, etc.). In order to reuse scripts as much as possible, the definitions of loop variables should be part of the parameter sets. This being the case, scripts need to be able to access these values for use in loops. Loop values can be of several different types. They can be an array of values, a range (beginning and ending values with an increment/decrement), or possibly even a function. Current settings are typically arrays. Positions for probe motion of pointscan measurements have usually specified a beginning first and last positions with an increment, although tables have been used also. CHISOX does not use functions, but they could be useful (e.g. degaussing ramps), but we would need to verify that they operate within safe limits.

The script would extract loop values from a tool’s parameter set.

hysteresis = get(ps_tool, ”hysteresis”)
meas_currents = get(ps_tool, “currents1”)

In the above case, two sets of current ramplists are obtained, one containing the hysteresis currents, and one the measurement currents. Somehow the script will need to know which is which (hence the second argument), but how exactly this it to be implemented needs to be defined.

The objects returned by these method calls will contain the loop values, which can be used by iterating through the set.

meas_currents.each do current
	.
	.
	.
done

The iterators for these objects will interpret the type (array, range, function) and behave appropriately.

Logging

At various points throughout the script items will be logged. For instance, there can be a log entry to indicate the start of the test and what kind of test it is. Logging can also be done to indicate that a run or some portion of the test is taking place.

Log(“test”, message_or_test_paramter_object)

Getting Data

Although we use the same command, measuring data depends on the tool used. Once the data is measured it is put in to the database.

measure(x_position_tool)

measure(harmonics_tool)

It may sometimes be desirable to get the data in to the script as well as save it to storage.

z = measure(z_position_tool)
	.
	.
	.
plot(z)

Whereas most measurements of this type get one data item, some, such as for rotating coil measurements, get a data set, so the latter case may not be appropriate for all tools.

Some tools may have multiple channels. In those instances, a second argument can indicate the channel number.

channels = get(termperature_mux_tool)
currents = get(ps_tool, “current2”)
	.
	.
	.
currents.each do current
		.
		.
		.
	channels.each do channel
		measure(temperature_mux_tool, channel)
	done
		.
		.
		.
done

Note that this case is not supported in CHISOX checklists, but is a recommended improvement for EMMA scripting. For example, when a checklist reads multiple temperatures using a DMM with a MUX, a separate installed instrument is used for each channel. The enhancement shown here can also reduce the number of scripts required for doing different measurements as it allows for any number of sensors be read, from zero to many. The actual channels to be used for a particular test is set in the configuration.

Sending Parameters to Tools

Scripts can send values to tools.
set(x_position_tool, 0.0)

currents.each do current
	set(ps_tool, current)
		.
		.
		.
done

Loops

Loops can be, and usually will be nested. Look at the following example.

currents = get(ps_tool, “current2”)
probe_coils = get(harmonics_tool)
	.
	.
	.
currents.each do current
	set(ps_tool, current)
	wait(ps_tool)
		.
		.
		.
	probe_coils.each do coil
			.
			.
			.
	Done
done

In this example, we obtain the set of currents and the set of probe coil configurations to use during the measurement. We then loop over the currents by doing some things, then start the probe coil loop. As each coil is selected, a measurement is done using that coil.

Using pointscan as an example, we could have the following.

currents = get(ps_tool, “current2”)
x_positions = get(x_position_tool)
y_positions = get(y_position_tool)
z_positions = get(z_position_tool)
	.
	.
	.
currents.each do current
	set(ps_tool, current)
	wait(ps_tool)
		.
		.
		.
	z_positions.each do z
		set(z_position_tool, z)
		wait(z_position_tool)
			.
			.
			.
		x_positions.each do z
			set(x_position_tool, x)
			wait(x_position_tool)
				.
				.
				.
			y_positions.each do y
					.
					.
					.
				measure(current2_readback_tool)
				measure(y_field_tool)
				measure(current2_readback_tool)
					.
					.
					.
			done
		done
	done
done

In this example, we have four loops, each with nested loops within them except for the innermost loop. The loop values are usually ranges where starting and endpoints are defined along with an increment. Positions can also be defined in tables, or perhaps even functions.

There could possibly be more nested loops than this if we consider that some multipole magnets use more than one power supply, or if other types of measurements are done such as recording coil voltages or temperatures.

Loops can also be done with counters

hysteresis = get(ps_tool, “current1”)
	.
	.
	.
for i = 1 to 3 do
	hysteresis.each do current
		set(ps_tool, current)
		wait(ps_tool)
	done
done

A couple of situations with loops should also be considered.

In recent times we have more frequently be required to do pointscan measurements with points defined by a polar coordinate system. This can be done with CHISOX using tables for the position values, but to get evenly spaced points on a circle either means getting many more points on a non-uniformly spaced grid (due to nesting), or hardcoding each point in the checklist. It would be useful to have a polar coordinate tool which has a parameter set that specifies a radius or radii as well as points on the circle(s).

radial_positions = (polar_coordinate_tool)
	.
	.
	.
radial_positions.each do point
	Set(polar_coordinate_tool, point)
		.
		.
		.
done

However, in this case the underlying code for the script will need to be careful in how the probe is moved from one point to the next so as not cause the probe to run in to the magnet.

We have also sometimes been asked to map a non-linear path though the aperture of a magnet. It would be helpful to use pairs of points to position the probe in one loop instead of using nested loops. Again, care must be taken to avoid causing the probe run in to the magnet or other obstructions.

Other Scripting Commands

If we choose to use an existing language, then we have access to all of the features of that language. If we create our own, we may want to add some additional features such as print, plot, sleep, spawn, etc. as well as have the option to do mathematical calculations.

Scripts and Versions

CHISOX supports versions of checklists, including versions for sublists. However, in practice, this feature probably never worked as well as intended. In addition, use of a new current ramplist meant that either a new checklist had to be built or making a change to an old one to create a new version. The new version would then supersede the old one. It would be useful if versioning for EMMA considerably reduces the number of scripts required for many different measurements. Perhaps the inner levels of a script can also be replaced with different versions (which CHISOX does with limited success in practice), and these versions specified within the configuration set. The down side to this is that when visibly looking at the source of the script it would be less clear what is actually happening unless the inner levels could also be easily viewed.

At the most basic level the highest order scripts should come under some versioning or revision system. If we decide to versioning at the inner level of a script we should think carefully on how to do this. If current sets, position sets, etc. are part of the configuration, then many scripts will be able to be reused even without versioning. It will still be an improvement over what happens now in CHISOX, where in most cases a new measurement requires a new checklist.

3 Special Considerations

Gain settings

Gain settings for harmonics and flat coil measurements could be a part of the configuration set, but traditionally have not. CHISOX determines gain settings based on a magnet or magnet series, a probe, coil configuration, the region of the magnet begin tested, and current range, not on the specific measurement. It uses a special table in the database that contains these values. This set of values has been found to be deficient in some ways. Although calculation of the gain for a strength measurement should be fairly straight-forward, during shape measurements we frequently encounter integrator overload conditions, especially at the edges of the magnet aperture. Thus the gain setting can depend on ranges in x position.

The gain setting can also depend on the speed of the probe, although in practice this has been less of a problem.

More recently I observed a situation regarding a magnet with a main coil and two trim coils. When testing the trim coils alone, CHISOX would select gains based on the main coil measurements. There is no place in the harmonics_setups table that differentiates between the powered coils of these types of magnets. Thus the gain can also depend on the magnet coil being tested.

Since it is not always possible to know a priori what the optimal gain setting should be, the measurement program (not necessarily the script) should allow the operator to change the gain setting on the fly during a measurement if an error occurs due to an over range condition. And, once the run succeeds, that gain be stored as part of the data set. It should also be set for use in future measurements.

Alternatively or in addition, a measurement script could be developed that would iterate over an allowed set of gains in order to find the optimum settings, which then could be used for future measurements.

Looping over Non-standard Parameters

It should be possible to write scripts that loop over non-standard parameters, or “variable” constants, like the gain example discussed in the previous section. Another example would be certain motor parameters. These situations present issues in data storage which will be examined in a separate note.
[bookmark: _GoBack]

Scripting in EMMA 9 of 9
