
Fake Data Studies
fake_seb has successfully read a mBooNE style
uncompressed data file and shipped events over
sockets to fake_assembler. Glenn and Eric each
have done this. Glenn did it on 2 machines:
traffic across network for real, demonstrating
faster-than-required data movement to an
output file.

 Now, I can report I’ve done this with a
compressed uBooNE data file format. So, I altered
Georgia’s Root Macro to write fake-Huff coding
of events of varying size (in principle). Created
file. Fired up fake_seb, fake_assembler and read
up evts, shipped, wrote data to output file.

=> Will cross this small task off the list. 1

Tuesday, August 30, 2011

uBooNE DAQ SEB code design

There is nice legacy mBooNE C code that looks
suitable, elegant, not out-of-date. I propose to
re-use it. Main difference being at the lowest
level where the events come into the process
memory.

We will run 2 parent seb processes: one for SN
data, one for triggered data. They look the same
in almost every respect.

2 threads per seb process: getter and sender.
2

Tuesday, August 30, 2011

uBooNE DAQ SEB code (2)

getter in a while(FOREVER) walks through the
memory as new memory is filled, increments a
newEvent semaphore and packages up digitized
signals into a buffer of events.

sender in its own while(FOREVER) decrements
newEvent semaphore when it’s available, grabs
pointer to latest event, sends it over sockets to
assembler (file) for triggered (supernova) data.
Decrements sentEvent semaphore.

I’m inclined to add a third thread that fills the
memory: Nevis’s code bundled up in its own
thread.

3

Tuesday, August 30, 2011

uBooNE DAQ SEB code (3)

4

sender

seb.c
{
extern sem_t newData,eventToAssembler,newDMA;
extern Event, p_rec;

...
 pthread_create(&sender,...)
 pthread_create(&getter,...)
 pthread_create(&poller,...)

}

getter
{
while()
 {

sem_wait(&newDMA);
while(ind<DMA.size())
 {
 sem_post(&newData);
 ind++;
 while(t<9600)
 {
 Event+t->ADC = p_rec+ind+t->ADC;
 }

sem_post(&eventToAssembler);
 }
 }
}

poller
{
while()
 {

// Reserve space, DMAlock p_rec
 DMA(p_rec, ...);
 sem_post(&newDMA);

 }

}

{

while()
 {

sem_wait(&newData);

fd=disk OR sockets

write(fd, Event, ...)
sem_wait(&eventToAssembler);
 }
}

sem_post,wait
=> give,take a semaphore.

Tuesday, August 30, 2011

