S. DEPARTMENT OF Office of

Fermilab NERGY Science

art3

Kyle J. Knoepfel
art stakeholders meeting

31 May 2018

Disclaimer

‘art 3” means the first released version of art with the major number 3 (e.g.
3.00.00). It does not refer to all versions with the major number 3.

» This talk is an introduction to art 3.

* |t does not discuss all aspects of art 3.

 [tis not intended to be formal documentation for art 3.
|t may contain mistakes.

« Some interface may yet change (not a lot though).

2L Fermilab

2 5/31/18 K. J. Knoepfel | art stakeholders meeting

Outline

* Opening remarks

« arttransitions and path processing
— Consequences
 art 3 introduction
— Command-line invocation
— Guarantees and limitations
— Kinds of modules
 lllustrations
— Module interface
— Services
» General breaking changes to legacy modules and to legacy services
« Guidance moving to art 3

* Next steps/down the road
3¢ Fermilab

3 5/31/18 K. J. Knoepfel | art stakeholders meeting

September 2017 — first art MT forum meeting

Approaching the design

» The design of a multi-threaded framework should be based on fundamental
principles, not on the limitations of external dependencies.
— The relevant questions are:
* In what contexts does multi-threading make sense?
* In what contexts does multi-threading not make sense?
* Not, when can we do multi-threading and when can we not.
— The implementation must accommodate any limitations, not cater to them.

« We have striven for a balance between complexity and efficiency:

— Our preference is to have a slightly less efficient, easier-to-understand system than a
slightly more efficient, difficult-to-understand system.

2L Fermilab

4 5/31/18 K. J. Knoepfel | art stakeholders meeting

September 2017 — first art MT forum meeting

User interface

* “No framework code is so precious that it must be saved; nothing is untouchable.
Our users' code is precious, and we should break as little of it as possible.”

« To the extent possible, the user interface should reflect only physically meaningful
concepts—i.e. those concepts that are already known to art users: Results, Run,

SubRun, and Event. It should not reflect implementation details.
— Exceptions to this could be for those developing services or other more-expert facilities

than modules.

2L Fermilab

5 5/31/18 K. J. Knoepfel | art stakeholders meeting

September 2017 — first art MT forum meeting

Nine months later, these principles have held:

« The design is based on fundamental principles, not limitations of external
libraries.

« There are known inefficiencies that have been tolerated for the sake of
simplicity and to avoid premature optimization. They can be improved
upon in future releases.

« Except for issues directly coupled to MT execution, legacy modules and
configurations will continue to work without modification. Typically, only
rebuilding will be required.

2= Fermilab

6 5/31/18 K. J. Knoepfel | art stakeholders meeting

Allowed transitions

 artis designed to process a hierarchy of data-containment levels:
— Run O SubRun > Event

« art users expect the framework to respect this hierarchy
* The allowed transitions by the framework are thus:

Start Run SubRun
(fragment) (fragment)

These transitions are implicit to the user.

2L Fermilab

7 5/31/18 K. J. Knoepfel | art stakeholders meeting

Processing a data-containment level (e.g. Event)

 The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

physics: {

producers: {
makeHits: {...}
makeShowers: {...}

produceG4Steps: {...} L MOdUIG deCIarat|OnS
b

analyzers: {
plotHits: {...}
}

hitPath: [makeHits, makeShowers]

geomPath: [produceG4Steps] o Path declarations

analyzePath: [plotHits]

2L Fermilab

8 5/31/18 K. J. Knoepfel | art stakeholders meeting

Processing a data-containment level (e.g. Event)

* The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

9

physics: {

producers: {
makeHits: {...}
makeShowers: {...}
produceG4Steps: {...}
b
analyzers: {
plotHits: {...}

b
Trigger path hitPath: [makeHits, makeShowers]
Trigger path geomPath: [produceG4Steps]
End path analyzePath: [plotHits]

5/31/18

K. J. Knoepfel | art stakeholders meeting

2L Fermilab

Processing a data-containment level (e.g. Event)

* The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

physics: {

producers: {
makeHits: {...}
makeShowers: {...}
produceG4Steps: {...}
b
analyzers: {
plotHits: {...}

b
Trigger path hitPath: [makeHits, makeShowers]
Trigger path geomPath: [produceG4Steps]
End path analyzePath: [plotHits]

10

5/31/18

K. J. Knoepfel | art stakeholders meeting

« The order in which trigger
paths are executed is
unspecified (current ari).

* In MT art trigger paths will be
executed simultaneously.

* Modules in a trigger path are
executed in the order specified.

« End paths are always

processed after all trigger paths.

A module is executed once per

event.
2L Fermilab

Processing a data-containment level (e.g. Event)

* The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

« The order in which trigger

hysics: .
physics: paths are executed is
producers: { unspecified (current art).
makeHits: {...} . .
makeShowers: {...} * In MT art trigger paths will be
, Producetasteps: donnd executed simultaneously.
analyzers: { . i i
e T Modules in a trigger path are
} executed in the order specified.
Trigger path hitPath: [makeHits, makeShowers] * End paths are alway_s
Trigger path | geomPath: [produceG4Steps] processed after all trigger paths.
End path analyzePath: [pTlotHits] . oL S
e per
Heeding these facts is essential for successful use of art 3.
2% Fermilab

11 5/31/18 K. J. Knoepfel | art stakeholders meeting

Consequences of arf’s guarantees

« Modules on one trigger path may not consume products created by modules that
are not on that same path.

2L Fermilab

12 5/31/18 K. J. Knoepfel | art stakeholders meeting

Consequences of arf’s guarantees

« Modules on one trigger path may not consume products created by modules that
are not on that same path.

» The following is a configuration error (heuristically):

13

5/31/18

physics: {
producers: A
pl: { produces: ["int", ""] }
p2: { consumes: ["int", "pl::current_process"] }
I
tpl: [p1]
tp2: [p2]
ks

K. J. Knoepfel | art stakeholders meeting

2L Fermilab

Consequences of arf’s guarantees

« Modules on one trigger path may not consume products created by modules that

are not on that same path.

« The following is also a configuration error (heuristically):

14

physics: {

producers: {
pl: { produces:
p2: { produces:
readThenMake: {

consumesMany:

I3

I3

[Ilin.tll’ IIII] }
["int", "instanceName"] }

["int"] // calls getMany

tpl: [pl, readThenMake]
tp2: [p2, readThenMake]

5/31/18 K. J. Knoepfel | art stakeholders meeting

2L Fermilab

Consequences of arf’s guarantees

« Modules on one trigger path may not consume products created by modules that
are not on that same path.

« The following is also a configuration error (heuristically):

| nhvciccg: { |

art 3 catches these errors if you use the consumes interface.

Module readThenMake on paths tpl, tp2 depends on
Module p2 on path tpZ2

CTOTTo OIS oOT T T v T =TT T T 77 AR — o el RS

}

I3
tpl: [pl, readThenMake]
tp2: [p2, readThenMake]

2L Fermilab

15 5/31/18 K. J. Knoepfel | art stakeholders meeting

art 3

2L Fermilab

16 5/31/18 K. J. Knoepfel | art stakeholders meeting

Multi-threaded event-processing

 art 3 supports concurrent processing of events.
— The number of events to process concurrently is specified by the number of schedules
— The user can optionally specify the number of threads.

* The user opts in to concurrent processing.

2L Fermilab

17 5/31/18 K. J. Knoepfel | art stakeholders meeting

Multi-threaded event-processing

 art 3 supports concurrent processing of events.
— The number of events to process concurrently is specified by the number of schedules
— The user can optionally specify the number of threads.

* The user opts in to concurrent processing.

oSen. w7

<config> ..

(1, 1) art —c
(1, 1) art -c
4, 4) art -c
(nproc, nproc) art -c
(1, 4) art -c

<config>
<config>
<config>
<config>

--nschedules 1 —--nthreads 4 ..

* In a grid environment, number of threads is limited to the number of CPUs
configured for the HTCondor slot (art adjusts the number of threads).

18 5/31/18 K. J. Knoepfel | art stakeholders meeting

2L Fermilab

art 3 guarantees

» Processing of an event happens on one and only one schedule.

« For a given trigger path, modules are processed in the order specified.
« A module shared among paths will be processed only once per event.
* Product insertion into the event is thread-safe.

» Product retrieval from the event is thread-safe.

* Provenance retrieval from the event is thread-safe.

« All modules and services provided by art are thread-safe.
— For TFileService, the user is required to specify additional serialization.

2L Fermilab

19 5/31/18 K. J. Knoepfel | art stakeholders meeting

art 3 limitations— Primum non nocere (first, to do no harm)

* Only events within the same SubRun are processed concurrently.
Analyzers and output modules do not run concurrently.

MixFilter modules are legacy modules.

Secondary input-file reading is allowed only for 1 schedule and 1 thread.
TFileService file-switching is allowed only for 1 schedule and 1 thread.

2L Fermilab

20 5/31/18 K. J. Knoepfel | art stakeholders meeting

Kinds of modules in art 3

 artguarantees that any currently-existing modules (to within some interface
changes) will be usable in a multi-threaded execution of art.

— No multi-threading benefits will be realized with such “legacy” modules

» To take advantage of arf's multi-threading capabilities, users will need to choose
the kind of module they use:

— Shared module: sees all events—calls can be serialized or asynchronous.

— Replicated module: for a configured module, one copy of that module is created per
schedule—each module copy sees one event at a time. Use if moving to a concurrent,
shared module is not feasible.

2L Fermilab

21 5/31/18 K. J. Knoepfel | art stakeholders meeting

Time structure for calling modules
Single schedule (current ari)

22

5/31/18

K. J. Knoepfel | art stakeholders meeting

Begin
SR1

End
SR1

2L Fermilab

Time structure for calling modules
Single schedule (current art)

23

Begin
SR1

—[SubRun

5/31/18

K. J. Knoepfel | art stakeholders meeting

[= | swi

2L Fermilab

Shared modules
Modules shared across schedules

2L Fermilab

24 5/31/18 K. J. Knoepfel | art stakeholders meeting

Time structure for calling modules segin ||LJ[4] End
SR1 SR1

Multiple schedules (art 3.0) 2 3

2L Fermilab

25 5/31/18 K. J. Knoepfel | art stakeholders meeting

Time structure for calling modules

Multiple schedules (art 3.0)

26

5/31/18

K. J. Knoepfel | art stakeholders meeting

Begin _;_ﬂ End
SR1 SR1
2
£ Fermilab

Time structure for calling modules gegin ||/ 4] End
SR1 SR1

Multiple schedules (art 3.0) 2 3

- Data races are now possible.

2L Fermilab

27 5/31/18 K. J. Knoepfel | art stakeholders meeting

Time structure for calling modules

Multiple schedules (art 3.0)

28

Begin
SR1

;_ﬂ End

SR1

5/31/18

K. J. Knoepfel | art stakeholders meeting

If the state of one of the
modules is updated when
simultaneously processing
two events, there can be
a data race.

What are some ways
to handle this?

2L Fermilab

Use a “legacy” module

class HistMaker : public art::EDProducer {
public:
explicit HistMaker(Parameters const& p) : EDProducer{p}

{}

void produce(Event& e) override {} // Called serially wrt. all
// serialized modules

b

« Legacy modules imply maximum serialization.

— Legacy modules cannot be run in parallel with any other legacy modules or any serialized
shared modules.

« With art 3, any new modules should not be legacy modules.

» The better solution is to use a SharedModu le, which can be serialized only wrt
itself.

2L Fermilab

29 5/31/18 K. J. Knoepfel | art stakeholders meeting

Use a shared module

class HistMaker : public art::SharedProducer {
public:
explicit HistMaker(Parameters const& p) : SharedProducer{p}

{
serialize<InEvent>(); // Declaration to process
// one event at a time.
¥

void produce(Event&) override {} // Called serially wrt. itself
%

« But there can be other data race problems.

2L Fermilab

30 5/31/18 K. J. Knoepfel | art stakeholders meeting

Time structure for calling modules

Multiple schedules (art 3.0)

31

Begin
SR1

L] End

SR1

5/31/18

K. J. Knoepfel | art stakeholders meeting

If two modules are processing
different events at the same
time, but they are using a
common resource, there

can be a data race.

How do we avoid such a data
race?

2L Fermilab

Serialized module due to shared resource

Suppose you want to call TCollection:: (Set|Get)CurrentCollection

First step: please don’t. This is only illustrating a thread-unsafe interface.

32

5/31/18 K. J. Knoepfel | art stakeholders meeting

2L Fermilab

Serialized module due to shared resource

class Fitter : public art::SharedProducer {
public:
explicit Fitter(Parameters const& p) : SharedProducer{p}

{

serialize<InEvent>("TCollection"); // Declare the common resource

}

// Called serially wrt. other modules that use TCollection
void produce(Event& e) override {}

};

« We are working on a way to standardize the arguments to serialize.

2L Fermilab

33 5/31/18 K. J. Knoepfel | art stakeholders meeting

If you can guarantee no data races...

34

class HitMaker : public art::SharedProducer {
public:
explicit HitMaker(Parameters const& p) : SharedProducer{p}

{

async<InEvent>();

}

void produce(Event& e) override {} // Called asynchronously

};

2L Fermilab

5/31/18 K. J. Knoepfel | art stakeholders meeting

Replicated modules
One module per schedule

2L Fermilab

35 5/31/18 K. J. Knoepfel | art stakeholders meeting

Replicated modules
One module per schedule

« Sometimes the easiest way to gain multi-threading benefits is to replicate modules

across schedules—avoids data races from sharing a module.

2L Fermilab

36 5/31/18 K. J. Knoepfel | art stakeholders meeting

Time structure for calling modules segin ||LJ[4] End
SR1 SR1

Multiple schedules (art 3.0) 2 3

2L Fermilab

37 5/31/18 K. J. Knoepfel | art stakeholders meeting

Time structure for calling modules gegin ||/ 4] End
SR1 SR1

Multiple schedules (art 3.0) 2 3
—[SubRun

Multiple copies of configured
module m2 avoids data-races
wrt. m2 data members.

2L Fermilab

38 5/31/18 K. J. Knoepfel | art stakeholders meeting

Time structure for calling modules
Multiple schedules (art 3.0)

;_ﬂ End

SR1

—[SubRun

39 5/31/18 K. J. Knoepfel | art stakeholders meeting

Multiple copies of configured
module m2 avoids data-races
wrt. m2 data members.

Consequence: each module
copy does not see all events.

2L Fermilab

Replicated producer

* Do not use a replicated producer is you need to use a shared resource.

class Accumulator : public art::ReplicatedProducer {
public:

};

explicit Accumulator(Parameters const& p)
: ReplicatedProducer{p}
{}

// Each module copy sees one event at a time
void produce(Event& e) override;

» For art 3.0, replicated modules cannot produce Run and SubRun data products.

40

5/31/18 K. J. Knoepfel | art stakeholders meeting

2L Fermilab

Producer virtual member functions

EDProducer SharedProducer ReplicatedProducer

void beginJob() void beginJob(Services consté&) void beginJob(Services consté&)
void beginRun(Runé&) void beginRun(Run&, Services const&) void beginRun(Run const&, Services consté&)
void beginSubRun(SubRun&) void beginSubRun(SubRun&, void beginSubRun(SubRun consté&,
Services consté&) Services const&)

void produce(Event&) void produce(Event&, Services consté&) void produce(Event&, Services const&)
void endSubRun(SubRun&) void endSubRun(SubRun&, void endSubRun(SubRun consté&,

Services consté&) Services const&)
void endRun(Run&) void endRun(Run&, Services const&) void endRun(Run const&, Services const&)
void endJob() void endJob(Services const&) void endJob(Services const&)

« Aproduce override is required; all others are optional.

2L Fermilab

41 5/31/18 K. J. Knoepfel | art stakeholders meeting

Filter virtual member functions

EDFilter SharedFilter ReplicatedFilter

void beginJob() void beginJob(Services consté&) void beginJob(Services consté&)
bool beginRun(Run&) void beginRun(Run&, Services const&) void beginRun(Run const&, Services consté&)
bool beginSubRun(SubRun&) void beginSubRun(SubRun&, void beginSubRun(SubRun consté&,
Services consté&) Services const&)

bool filter(Event&) bool filter(Event&, Services const&) bool filter(Event&, Services const&)
bool endSubRun(SubRun&) void endSubRun(SubRun&, void endSubRun(SubRun consté&,

Services consté&) Services const&)
bool endRun(Run&) void endRun(Run&, Services const&) void endRun(Run const&, Services const&)
void endJob() void endJob(Services const&) void endJob(Services const&)

« A filter override is required; all others are optional.

2L Fermilab

42 5/31/18 K. J. Knoepfel | art stakeholders meeting

Analyzer virtual member functions

EDAnalyzer SharedAnalyzer ReplicatedAnalyzer

void beginJob() void beginJob(Services consté&) void beginJob(Services consté&)
void beginRun(Run const&) void beginRun(Run consté§, void beginRun(Run consté&,
Services consté&) Services consté&)
void beginSubRun(SubRun const&) void beginSubRun(SubRun const§&, void beginSubRun(SubRun consté&,
Services consté&) Services consté&)
void analyze(Event const&) void analyze(Event const§, void analyze(Event consté&,
Services consté&) Services consté&)
void endSubRun(SubRun consté&) void endSubRun(SubRun const&, void endSubRun(SubRun const&,
Services consté&) Services consté&)
void endRun(Run consté&) void endRun(Run const§&, void endRun(Run const&,
Services consté&) Services consté&)
void endJob() void endJob(Services consté&) void endJob(Services const&)

« An analyze override is required; all others are optional.

2L Fermilab

43 5/31/18 K. J. Knoepfel | art stakeholders meeting

What is the Services type?

“Oart::ServiceHandle<T>{}, thou time is short.”
- Anonymous

 Until now, users have been able to create ServiceHandles from anywhere.

« With art 3, this pattern is changing.

« The recommended pattern will be for art users to create service handles from the
passed-in Services object.

void HitMaker::produce(Event&, Services const& services)
{

ServiceHandle<Calib> calibH = services.getHandle<Calib>();
}

 This will eventually allow for replicated services, akin to replicated modules.

« ServiceHand les can still be constructed anywhere, but that will eventually

change.
g 4 Fermilab

44 5/31/18 K. J. Knoepfel | art stakeholders meeting

Breaking changes to legacy modules and to services

2L Fermilab

45 5/31/18 K. J. Knoepfel | art stakeholders meeting

Breaking changes for legacy modules

» For producers and filters that call createEngine, you must explicitly call the non-
default constructor for EDProducer and EDFilter.

// art 2
RNGProducer(Parameters const& p)
: dist_{createEngine(p().seed())}

{}

// art 3

RNGProducer(Parameters const& p)
: art::EDProducer{p} // must specify base class c'tor
, dist_{createEngine(p().seed())}

{}

« This change will become necessary for all EDProducer and EDFilter modules
in a later version of art.

« All shared and replicated modules require calling similar base class constructors.

2L Fermilab

46 5/31/18 K. J. Knoepfel | art stakeholders meeting

Breaking changes for services

« Through art 2, RandomNumberGenerator has had a concept of the “current”
module being processed:

ServiceHandle<RNG>{}->getEngine();
ServiceHandle<RNG>{}->getEngine("the_other_one");

* In art 3, there is no longer any “current” module. The equivalent interface is:

ServiceHandle<RNG> rng{};
rng—>getEngine(scheduleID, modulelLabel);
rng—>getEngine(scheduleID, moduleLabel, "the_other_one");

- If all engines are retrieved using the createEngine interface, then getEngine
can be removed, and the correct engine can be given by reference to the functions
that need it.

— Direct access to the RandomNumberGenerator service is no longer needed.
3¢ Fermilab

47 5/31/18 K. J. Knoepfel | art stakeholders meeting

Breaking changes for services

« Service callback signature changes:

. sgal | a2 | a3

sPreSourceEvent void() void(ScheduleContext)

sPostSourceEvent void(Event consté&) void(Event const&, ScheduleContext)
sPreProcessEvent void(Event consté&) void(Event const&, ScheduleContext)
sPostProcessEvent void(Event consté&) void(Event const&, ScheduleContext)
sPreWriteEvent void(ModuleDescription const&) void(ModuleContext consté&)

sPostWriteEvent void(ModuleDescription const&) void(ModuleContext consté&)

sPreProcessPath void(string consté&) void(PathContext consté&)

sPostProcessPath void(string const&, HLTPathStatus consté&) void(PathContext const&, HLTPathStatus const&)
sPreModulex void(ModuleDescription const&) void(ModuleContext consté&)

sPostModulex void(ModuleDescription const&) void(ModuleContext consté&)

2L Fermilab

48 5/31/18 K. J. Knoepfel | art stakeholders meeting

Breaking changes for services

* Services must be thread-safe.

2L Fermilab

49 5/31/18 K. J. Knoepfel | art stakeholders meeting

ROOT and MT

« ROOQOT’s thread-safety flag has been enabled by art.
— Allows (e.g.) multiple ROOT files to be opened in parallel.
« ROOT’s implicit MT flag has not been enabled by art.
 All interactions art has with ROOT are serialized.
— Input-file reading
— Output-file writing
— Touse TFileService, you must use a shared module that calls the appropriate
serialize function.

2L Fermilab

50 5/31/18 K. J. Knoepfel | art stakeholders meeting

Guidance moving to art 3

 Solve workflow issues first.

— You might have thread-safe
modules and services.

— If you're relying on illegal path
configurations, you’ll run into
product dependency errors.

51 5/31/18 K. J. Knoepfel | art stakeholders meeting

2L Fermilab

Guidance moving to art 3

 Solve workflow issues first.

— You might have thread-safe
modules and services.

— If you're relying on illegal path
configurations, you’ll run into
product dependency errors.

52 5/31/18 K. J. Knoepfel | art stakeholders meeting

Recompile/rerun jobs with 1 schedule/1 thread

(default)

Add consumes statements to modules
(use —M program option for help)

Recompile/rerun jobs with 1 schedule/1 thread
and use ——errorOnMissingConsumes

Recompile/rerun jobs with more than 1
schedule/1 thread

2L Fermilab

Guidance moving to art 3

 Solve workflow issues first.

— You might have thread-safe
modules and services.

— If you're relying on illegal path
configurations, you’ll run into
product dependency errors.

53 5/31/18 K. J. Knoepfel | art stakeholders meeting

« Determine what kind of module you need.

Producer, filter, or analyzer?
Do you need to create (Sub)Run products?
Do you need to see every event?

Do you need to call an external library that is not
thread-safe?

Do you have mutable data members for which
operations are not thread-safe?

2L Fermilab

Guidance moving to art 3

« Solve workflow issues first. * Determine what kind of module you need.
— You might have thread-safe — Producer, filter, or analyzer?
modules and services. — Do you need to create (Sub)Run products?
— If you're relying on illegal path — Do you need to see every event?

configurations, you’ll run into

— Do you need to call an external library that is not
product dependency errors.

thread-safe?

— Do you have mutable data members for which
operations are not thread-safe?

« We are working to provide guidance in dealing with such issues.
« Contact us.

2L Fermilab

54 5/31/18 K. J. Knoepfel | art stakeholders meeting

Next steps/down the road

2L Fermilab

55 5/31/18 K. J. Knoepfel | art stakeholders meeting

Next steps

« Expect art-3 tag in next few days.

« Documentation!

« Will work with Mu2e to demonstrate scalability.

» The SciSoft team’s direct involvement with LArSoft means that we will help LArSoft

as well.
* If you are interested in upgrading your code to benefit from art 3, please contact us.

2L Fermilab

56 5/31/18 K. J. Knoepfel | art stakeholders meeting

art 3.01

* Only C++17 builds provided
« EDProducer and EDFilter default constructors will be deprecated
« Global errorOnFailureToPut parameter/program-option will be deprecated

2L Fermilab

57 5/31/18 K. J. Knoepfel | art stakeholders meeting

art 3.02

art will begin using C++17 features

EDProducer and EDFilter default constructors will be removed

Global errorOnFailureToPut parameter/program-option will be removed
RandomNumberGenerator: :getEngine member function will be deprecated

2L Fermilab

58 5/31/18 K. J. Knoepfel | art stakeholders meeting

art 3.xy

« Many other issues we have in the books that have taken a back seat

59

Improve exception format
Update stored SAM metadata

Disentangling art from unnecessary ROOT dependencies

etc.

5/31/18

K. J. Knoepfel | art stakeholders meeting

2L Fermilab

