
art news

Kyle J. Knoepfel
24 May 2018

• Consider the following configuration:

• According to art’s path-execution guarantees, the products made in p1 may not be
available whenever p2 is executed.

getMany(ByType) behavior

5/24/18 K. J. Knoepfel | art stakeholders meeting2

physics: {
producers: {
make1: { module_type: IntMaker value: 1 }
make7: { module_type: IntMaker value: 7 }
readIntsThenMakeSomeMore: { module_type: MoreInts }

 }
p1: [make1, make7]
p2: [readIntsThenMakeSomeMore] // relies on getMany

}

• Consider the following configuration:

• According to art’s path-execution guarantees, the products made in p1 may not be
available whenever p2 is executed.

• In MT execution, there are no trigger-path ordering guarantees at all.

getMany(ByType) behavior

5/24/18 K. J. Knoepfel | art stakeholders meeting3

physics: {
producers: {
make1: { module_type: IntMaker value: 1 }
make7: { module_type: IntMaker value: 7 }
readIntsThenMakeSomeMore: { module_type: MoreInts }

 }
p1: [make1, make7]
p2: [readIntsThenMakeSomeMore] // relies on getMany

}

• Consider the following configuration:

• According to art’s path-execution guarantees, the products made in p1 may not be
available whenever p2 is executed.

• In MT execution, there are no trigger-path ordering guarantees at all.

getMany(ByType) behavior

5/24/18 K. J. Knoepfel | art stakeholders meeting4

physics: {
producers: {
make1: { module_type: IntMaker value: 1 }
make7: { module_type: IntMaker value: 7 }
readIntsThenMakeSomeMore: { module_type: MoreInts }

 }
p1: [make1, make7]
p2: [readIntsThenMakeSomeMore] // relies on getMany

}

Options for art 3:
1. Retain unspecified (and nondeterministic in MT) behavior.
2. Remove getMany* interface.
3. For producers and filters, disable use of getMany* (at run-time).
4. For all modules, getMany* can only retrieve products from the input source.
5. For producers and filters, getMany* can only retrieve products from the

input source.

• Consider the following configuration:

• According to art’s path-execution guarantees, the products made in p1 may not be
available whenever p2 is executed.

• In MT execution, there are no trigger-path ordering guarantees at all.

getMany(ByType) behavior

5/24/18 K. J. Knoepfel | art stakeholders meeting5

physics: {
producers: {
make1: { module_type: IntMaker value: 1 }
make7: { module_type: IntMaker value: 7 }
readIntsThenMakeSomeMore: { module_type: MoreInts }

 }
p1: [make1, make7]
p2: [readIntsThenMakeSomeMore] // relies on getMany

}

Options for art 3:
1. Retain unspecified (and nondeterministic in MT) behavior.
2. Remove getMany* interface.
3. For producers and filters, disable use of getMany* (at run-time).
4. For all modules, getMany* can only retrieve products from the input source.
5. For producers and filters, getMany* can only retrieve products from the

input source.
6. For producers and filters, getMany* can retrieve only products from

(a) modules on the same path and (b) from the input source.

• Consider the following configuration:

getMany(ByType) behavior – Ex. 1

5/24/18 K. J. Knoepfel | art stakeholders meeting6

physics: {
producers: {
make1: { module_type: IntMaker value: 1 }
make7: { module_type: IntMaker value: 7 }
readIntsThenMakeSomeMore: { module_type: MoreInts }

 }
p1: [make1, make7]
p2: [readIntsThenMakeSomeMore] // retrieves ints only

// from the source
}

• Consider the following configuration:

getMany(ByType) behavior – Ex. 2

5/24/18 K. J. Knoepfel | art stakeholders meeting7

physics: {
producers: {
make1: { module_type: IntMaker value: 1 }
make7: { module_type: IntMaker value: 7 }
read1WithGetMany: { module_type: GetManyReader }
read7WithGetMany: { module_type: GetManyReader }

 }
p1: [make1, read1WithGetMany] // only ‘1’ retrieved
p2: [make7, read7WithGetMany] // only ‘7’ retrieved

}

• Consider the following configuration:

getMany(ByType) behavior – Ex. 3

5/24/18 K. J. Knoepfel | art stakeholders meeting8

physics: {
producers: {
make1: { module_type: IntMaker value: 1 }
make7: { module_type: IntMaker value: 7 }
readWithGetMany: { module_type: GetManyReader }

}
p1: [make1, readWithGetMany]
p2: [make7, readWithGetMany]

}

• Consider the following configuration:

• art guarantees that readWithGetMany is executed only once.
• Therefore, the above configuration is an error, and it will trigger an exception at

the beginning of the job if you use the consumesMany interface.

getMany(ByType) behavior – Ex. 3

5/24/18 K. J. Knoepfel | art stakeholders meeting9

physics: {
producers: {
make1: { module_type: IntMaker value: 1 }
make7: { module_type: IntMaker value: 7 }
readWithGetMany: { module_type: GetManyReader }

}
p1: [make1, readWithGetMany]
p2: [make7, readWithGetMany]

}

• Consider the following configuration:

• This likely is a configuration error.
• If the input source is EmptyEvent, then one of these modules could successfully

read a product, even though that probably wasn’t intended.
• Both modules will now fail to read the product.

Other consequences – Ex. 4

5/24/18 K. J. Knoepfel | art stakeholders meeting10

physics: {
producers: {
m1: { module_type: ReadIntThenMake tag: “m2” }
m2: { module_type: ReadIntThenMake tag: “m1” }

}
p1: [m1]
p2: [m2]

}

• Consider the following configuration:

• This likely is a configuration error.
• If the input source is EmptyEvent, then one of these modules could successfully

read a product, even though that probably wasn’t intended.
• Both modules will now fail to read the product.

Other consequences – Ex. 4

5/24/18 K. J. Knoepfel | art stakeholders meeting11

physics: {
producers: {
m1: { module_type: ReadIntThenMake tag: “m2” }
m2: { module_type: ReadIntThenMake tag: “m1” }

}
p1: [m1]
p2: [m2]

}

But	can	you	catch	the	error	sooner	using	consumes?

• Consider the following configuration:

• This likely is a configuration error.
• Even using consumes with this configuration wouldn’t trigger an error.
• Because the process name has not been specified, the data-dependency checker

assumes that the product could come from the input source.

Other consequences – Ex. 4

5/24/18 K. J. Knoepfel | art stakeholders meeting12

physics: {
producers: {
m1: { module_type: ReadIntThenMake tag: “m2” }
m2: { module_type: ReadIntThenMake tag: “m1” }

}
p1: [m1]
p2: [m2]

}

• Consider the following configuration:

• This likely is a configuration error.
• Even using consumes with this configuration wouldn’t trigger an error.
• Because the process name has not been specified, the data-dependency checker

assumes that the product could come from the input source.

Other consequences – Ex. 4

5/24/18 K. J. Knoepfel | art stakeholders meeting13

physics: {
producers: {
m1: { module_type: ReadIntThenMake tag: “m2::current_process” }
m2: { module_type: ReadIntThenMake tag: “m1::current_process” }

}
p1: [m1]
p2: [m2]

}

The	solution	is	to	use	the	“current_process” process	name.

• Consider the following configuration:

• This likely is a configuration error.
• Even using consumes with this configuration wouldn’t trigger an error.
• Because the process name has not been specified, the data-dependency checker

assumes that the product could come from the input source.

Other consequences – Ex. 4

5/24/18 K. J. Knoepfel | art stakeholders meeting14

physics: {
producers: {
m1: { module_type: ReadIntThenMake tag: “m2::current_process” }
m2: { module_type: ReadIntThenMake tag: “m1::current_process” }

}
p1: [m1]
p2: [m2]

}

The	solution	is	to	use	the	“current_process” process	name.

---- Configuration BEGIN

The following represent data-dependency errors:
Module m1 on path p1 depends on
Module m2 on path p2

Module m2 on path p2 depends on
Module m1 on path p1

---- Configuration END

• Need to enhance the data-dependency checker to handle consumesMany
• Some final bow-tying on implementation
• Release/documentation

• Timescale: ~week until tag

• Next week’s stakeholder meeting (5/31):
– art 3 presentation/show-and-tell
– Plan for full hour meeting (3-4 pm)

art 3 status

5/24/18 K. J. Knoepfel | art stakeholders meeting15

