
Multi-threaded art forum – art 3.0
Kyle J. Knoepfel
1 March 2018

• Review
• art 3.0 (proposed)

– General support
– Secondary input files
– Product mixing
– TFileService constraints
– Data-product dependency checking
– Replicated-module reduction facility

• Next steps

For today

3/1/18 K. J. Knoepfel | MT forum2

• Review
• art 3.0 (proposed)

– General support
– Secondary input files
– Product mixing
– TFileService constraints
– Data-product dependency checking
– Replicated-module reduction facility

• Next steps

For today

3/1/18 K. J. Knoepfel | MT forum3

We have questions and we need your answers!

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Art_multi-threading_forum_-_introduction

• We discussed motivations for a multi-threaded (MT) framework
• Largely based off of CMSSW’s design

– We use Intel’s Threading Building Blocks (TBB)
– Steps to be performed are factorized into tasks
– You can think of a call to your module’s “produce” function as performing a task

• Users specify the number of concurrent schedules (i.e. event loops) and
(optionally) the maximum number of threads that the process can use.

• Each loop processes one event at a time.
• Different modules will also be able to be run in parallel on the same event.

art MT forum – Session 1

3/1/18 K. J. Knoepfel | MT forum4

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Art_multi-threading_forum_-_introduction

• We discussed motivations for a multi-threaded (MT) framework
• Largely based off of CMSSW’s design

– We use Intel’s Threading Building Blocks (TBB)
– Steps to be performed are factorized into tasks
– You can think of a call to your module’s “produce” function as performing a task

• Users specify the number of concurrent event loops and (optionally) the maximum
number of threads that the process can use.

• Each loop processes one event at a time.
• Different modules will also be able to be run in parallel on the same event.

art MT forum – Session 1

3/1/18 K. J. Knoepfel | MT forum5

Implemented	for	art 3:

1 4 6 9

2 5

3

7 8

10

11

12

Begin
R1

Begin
SR1

End
SR1

End
R1

Begin
R2

Begin
SR 1

1

2

4

5

3

.	.	.
.	.	.

Begin
Job

.	.	.

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Art_multi-threading_forum_-_modules

• art guarantees that any currently-existing modules (to within some interface
changes) will be usable in a multi-threaded execution of art.
– No multi-threading benefits will be realized with such “legacy” modules

• To take advantage of art’s multi-threading capabilities, users will need to choose
the kind of module they use:
– Shared module: sees all events—calls can be serialized or asynchronous.
– Replicated module: for a configured module, one copy of that module is created per

schedule—each module copy sees one event at a time. Use if moving to a concurrent,
shared module is not feasible.

art MT forum – Session 2

3/1/18 K. J. Knoepfel | MT forum6

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Art_multi-threading_forum_-_modules

• Which kind of module you want is determined from the base class.

– Producers that must be called serially due to a shared resource:

art MT forum – Session 2

3/1/18 K. J. Knoepfel | MT forum7

class Fitter : public art::shared::Producer {
public:

explicit Fitter(Parameters const& p)
 {

serialize<Event>("TFileService"); // Declare the common resource
 }

// Called serially wrt. other modules that use TFileService
 void produce(Event& e) override {}
};

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Art_multi-threading_forum_-_modules

• Which kind of module you want is determined from the base class.

– Producers that you guaranteed have no data races:

art MT forum – Session 2

3/1/18 K. J. Knoepfel | MT forum8

class HitMaker : public art::shared::Producer {
public:

explicit HitMaker(Parameters const& p)
 {

async<Event>();
 }

 void produce(Event& e) override {} // Called asynchronously
};

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Art_multi-threading_forum_-_modules

• Which kind of module you want is determined from the base class.

– Replicated modules:

art MT forum – Session 2

3/1/18 K. J. Knoepfel | MT forum9

class Accumulator : public art::replicated::Producer {
public:

explicit Accumulator(Parameters const& p)
 {}

// Each module copy sees one event at a time
void produce(Event& e) override;

// Reduction interface...
};

art 3.0

3/1/18 K. J. Knoepfel | MT forum10

• Nominally all current facilities provided by art will be supported (some discussion
later on).

• Current legacy modules will still be supported
• Shared and replicated modules will be supported
• Processing of concurrent events will be supported for producers and filters
• Concurrent processing of multiple trigger paths for the same event will be

supported
• Concurrent insertion into an art::Event will be supported
• Analyzers and output modules will be serialized (for now)
• Services will need to be thread-safe

General support

3/1/18 K. J. Knoepfel | MT forum11

• Secondary input files (i.e. backing input files) are files that are opened whenever a
data-product retrieval from the primary input file fails.

• They are specified in the RootInput source configuration.
fileNames: [“f.root”]
secondaryFileNames: [{ a: “f.root” b: [“g1.root”, ”g2.root”]}]

• Since these files can be opened at any time during event processing, they cause
problems for multi-threading.

Secondary input files

3/1/18 K. J. Knoepfel | MT forum12

• Secondary input files (i.e. backing input files) are files that are opened whenever a
data-product retrieval from the primary input file fails.

• They are specified in the RootInput source configuration.
fileNames: [“f.root”]
secondaryFileNames: [{ a: “f.root” b: [“g1.root”, ”g2.root”]}]

• Since these files can be opened at any time during event processing, they cause
problems for multi-threading.

• There are two options:
– Since the current file-delivery system is not conducive to secondary input-file specification,

it is unlikely that anyone is using it. We can remove the facility altogether. This eases the
maintenance burden for us, but removes a feature that might be used later.

– Only allow secondary input files when 1 thread and 1 schedule are used.
– Thoughts?

Secondary input files

3/1/18 K. J. Knoepfel | MT forum13

• Users can mix products into an event using the MixFilter template.
• Since this facility uses ROOT I/O, there are thread-safety issues.
• For that reason, we propose that the event-level calls be serialized for mix filters

until we can develop a more efficient solution.

Product mixing

3/1/18 K. J. Knoepfel | MT forum14

• Users can mix products into an event using the MixFilter template.
• Since this facility uses ROOT I/O, there are thread-safety issues.
• For that reason, we propose that the event-level calls be serialized for mix filters

until we can develop a more efficient solution.
• It may be possible for users to specify mixing operations that can be run in parallel

for a given serialized event. Is this of interest?
• A caveat: with multi-threading enabled, repeated executions of the same program

will likely not produce the same mixed events.

Product mixing

3/1/18 K. J. Knoepfel | MT forum15

• For modules to use it safely, they must register that it is a shared resource from
within their constructors.

MyAnalyzer(Parameters const& p) {
serialize<Event>(“TFileService”);

}

• With art 2.10, it is possible to enable TFileService file-switching by specifying
the ‘fileProperties’ configuration table.

• File-switching is not thread-safe—the facility can only be supported if 1 thread and
1 schedule are being used.

TFileService constraints

3/1/18 K. J. Knoepfel | MT forum16

• It is a workflow error for a module on one path to require a product produced by a
module on another path (e.g.):

p1: [a, b, c]
p2: [d, e] // Error: ‘d’ uses a product created by ‘c’

• The order in which paths are executed is unspecified—serious issue in multi-
threading.

• art does not currently catch this type of error.

Data-product dependency checking

3/1/18 K. J. Knoepfel | MT forum17

• It is a workflow error for a module on one path to require a product produced by a
module on another path (e.g.):

p1: [a, b, c]
p2: [d, e] // Error: ‘d’ uses a product created by ‘c’

• The order in which paths are executed is unspecified—serious issue in multi-
threading.

• art does not currently catch this type of error.
• In art 3.0, if you use the ‘consumes’ interface, we will detect the error and an

exception will be thrown:
– https://cdcvs.fnal.gov/redmine/projects/art/wiki/Declaring_products_to_consume

Data-product dependency checking

3/1/18 K. J. Knoepfel | MT forum18

• CMSSW has the concept of telling the system if a product should be retrieved from
the current process or from the input source.

• We would like to adopt something similar to that:

InputTag const prodTag{“m1:i1:*current_process*”};
InputTag const presTag{“m1:i2:*source*”};

• A user is not required to specify “*current_process*” or “*source*”, but if
he/she does:
– Product lookup can be more efficient
– If included in a consumes statement, potential ambiguities are resolved

Data-product dependency checking

3/1/18 K. J. Knoepfel | MT forum19

• The art implementation of RandomNumberGenerator (RNG) uses CLHEP.
• CLHEP random number engines have mutable state that pose problems for MT.
• art will provide an interface that, when used correctly, will ensure no data races.
• Data races might be avoidable entirely if users rely only on createEngine (which

is a member of any module that would use RandomNumberGenerator).
• Calling ServiceHandle<RNG>{}->getEngine(…) may require a schedule ID

to be passed as an argument.
• Random-number seeds are a problem for replicated modules:

– A seed repeated across module copies results in correlated results
– CMSSW solution is to take the seed specified by the configuration and increment by 1 for

each copy. Is this acceptable?

Random number generation

3/1/18 K. J. Knoepfel | MT forum20

• A replicated module is replicated across schedules.
• After the events for a given SubRun have been processed, it may be desirable to

combine data from across the schedules for (e.g.) writing to a histogram.
• NB: combining information for data products is unnecessary since art’s internal

data-product mechanisms aggregate (Sub)Run products for you.
• Is such a reduction facility needed? If so, is it required for art 3.0?

Replicated-module reduction facility

3/1/18 K. J. Knoepfel | MT forum21

• Some more implementation necessary.
• As we try to wrap up art 3.0, we will rely more heavily on experiment input.
• The goal is to be able to release by the end of March.

– Will be difficult, but not crazy.
• We will be fleshing out the documentation.
• We plan to target specific experiment modules to demonstrate multi-threading

capability.

Next steps

3/1/18 K. J. Knoepfel | MT forum22

