NOTES on MOOC gpib use

Do cvs checkout fermi/fe_products/gpib to get gpib code from
repository. Look at /fecode-bd/vxworks_boot/fe/hrm/lebit1.cmd as
example of gpib startup script.

There are 8 possible drivers for gpib interface boxes or direct
interface to an instrument. They are defined in gpib_drv.h as:

#define VXI11_GPIB 0
#define NI_1014 1
#define ENET_GPIB 2
#define IP_GPIB 3
#define PMC_GPIB 4
#define VXI11_ETHERNET 5
#define ISERIES 6
[bookmark: _GoBack]#define ENETR_GPIB 7

Examples of assigning a driver to it's index and then associating that
with a GPIB_obj:

For enet box using reentrant driver with network name "cmtf-gpib-03":
 drv_init(7,enetrdrv_init)
 GPIB_obj("ENETR_GPIB","cmtf-gpib-03")

For VXI instrument "pxie-llrf-osc" (no interface box, but rpc calls over net):
 drv_init(0, vxi11drv_init());
 GPIB_obj("VXI11_GPIB","pxie-llrf-osc")

gpib related modules need to load:

#gipbdev, devicedev, enet modules are all needed if accessing instrument though enet box
ld (1, 1, "vxworks_boot/v6.4/module/mv5500/gpib/gpibdev-latest.out");
ld (1, 1, "vxworks_boot/v6.4/module/mv5500/gpib/devicedev-latest.out");
Use ENETR_GPIB if ld this
 ld (1, 1, "vxworks_boot/v6.4/module/mv5500/gpib/enetreentrantdrv-latest.out");
Use ENET_GPIB if ld this
#ld (1, 1, "vxworks_boot/v6.4/module/mv5500/gpib/enetdrv-latest.out");

For vxi11
ld (1, 1, "vxworks_boot/v6.4/module/mv5500/vxi11/vxi11-latest.out");
ld (1, 1, "vxworks_boot/v6.4/module/mv5500/gpib/vxi11drv-latest.out");
ld (1, 1, "vxworks_boot/v6.4/module/mv5500/gpib/vxi11ethernetdrv-latest.out");

SSDN is: (xxxx/xxOO/xxxx/xxDD)

DD indexes, in devicedev.c, into array gpibdevobj of possible devices.
Generally if you want to add a gpib instrument, try to find acnet
devices for a similar instrument. Then clone the array entry as a new
entry and make any needed changes for the new instrument. You can use
an existing array entry if it is not currently used in your
frontend. Of course the same array entry can be used for more than one
instrument on different front ends.

OO is OID. There are 8 gpib OIDs starting from 0x28 that apply to
devicedev.c. Any gpib OID can be used for any given device. A
convention for OID use could be to give devices for all instruments on
a given GPIB_obj the same OID. In assigning OID you must consider
that any unresponsive gpib instrument on a given OID can possibly
block the other instruments on that OID, which if long enough in time
can cause dpm pend errors for what would otherwise be responsive
instruments. Also, looking at gpib/dev_guts.h, you will see that the
8 gpib OIDs overlap other OID use, so you have to be careful if those
OIDs are already in use on the front end you are using.

There are other gpib OIDs besides what is used for devicedev.c
devices. Search in .h files and .c files to find what an acnet device
is using and what to ld and how to use in a startup
script. ar3500dev.c is an example.

You can call GPIB_obj 8 times. Do this in startup script. Each
GPIB_obj typically corresponds to 1 enet gpib interface box, into
which up to 32 gpib addresses can be used for different instruments.
It can also be for a VXI instrument. Each such interface has a
semaphore that the associated gpib instruments wait for.

For a VXI instrument, set the gpib address to 0 and use one of the 8
GPIB_obj's for that instrument. There may be a way to have multiple
VXI instruments on a given GPIB_obj, but I haven't discovered that.

How to (possibly) restart communication for a instrument:

re_ip_ibfind(objnum) will close and reopen connections for all gpib
addresses for the given objnum. objnum is 0 to 7. (You can see all
used objnum by print_gpib_obj_type). Note that if objnum is for an
interface box, this redoes connections for all instruments hooked up
to the given gpib interface box. I don’t know a way to just redo a
given instrument, ie chan, hooked up to an interface box.

‘print_gpib_enet_all’ gives more info about all enet boxes, which
could give a clue which ‘re_ip_ibfind(objnum)’ to do. It shows the
network name of the enet box, and what gpib addresses are currently
connected thru that box.

Other diagnostics:
Generally do lkup "print_" or lkup "list_" or "_print", "_list" to find diagnostics.
gpibdevice_list(DD) - the DD in ssdn
 This shows, among other things, what is being read back from an instrument.
gpibdevice_list_read_all
gpibdevice_list_all
gpibdevice_list_enabled_all
gpibdevice_list_dp_all
print_vxi11_all
print_hplink(0)
print_gpib_vxi11

Possibly helpful vxWorks diagnostics:

iosFdShow - to see use of File Descriptors
 It has happened that all FD's were used up so couldn't connect an instrument.
 Get -1 from gpib_wrt, gpib_rd when this is the case
inetstatShow - to see TCP, UDP connections

Also, following applies to ENET_GPIB, VXI11_ETHERNET: You can do
GPIB_help, which shows gpib_wrt(chan,”cmd”,strlen(cmd)). So if you
know the channel that is giving problems, you can do such as:
gpib_wrt(33,”*RST\n”,5) to do a reset. I don’t know what exactly a
IEEE 488.2 “*RST\n” does, but it may help in restarting communication.

If "*RST\n" and re_ip_ibfind don't work, you will likely have to cycle
power on the instrument or interface box.

How to find chan assignment for gpib_xxx calls:

Chan for gpib_xxx calls is defined as (gpibaddr + 32* Order_of_GPIB_obj_call).
So if an instrument is set to gpibaddr 2 and it's enet box is assigned by
the 5th call to GPIB_obj, the chan is 2 + 32*4.

Chan could be part of a periodic error being printed. Given that
deviceNum, DD in ssdn, is the index into array gpibdevobj, chan can
also be possibly set in the startup script by a call to
gpib_set_address(deviceNum, chan). Also the chan is in an array entry
in gpib/devicedev.c. Look for “/* device xx“, xx being DD in ssdn.
You will then see such as “2+(4*32)”, which gives the chan number for
gpib device that want, unless it is overridden by a gpib_set_address
call in the startup script.

Can also find chan for an instrument by looking at startup script and
do following:

If know the name of ENET_GPIB or some other such box, can look for
GPIB_obj() to find objnum. If know the instrument's gpib address,
then know chan by above formula.

Also if know acnet device name, gpibdevice_list(DD) will tell gpib obj
and gpib addr

There may be a way to list all chans, but I haven’t found it.
