A Python Based Wrapper for SPIFFE

J. P. Edelen

September 21, 2017

Abstract

This paper documents the python based wrapper for
the SPIFFE code that is maintained by the Advanced
Photon Source.

1 Introduction

SPIFFE is a 2.5-D electromagnetic particle in cell
field solver. The code is open source and developed
and maintained by the Advanced Photon Source at
Argonne National Laboratory. Currently the code is
built to interface with SDDSToolkits and other APS
software however due to the broad use of Python in
the scientific community for scripting of simulations,
optimization, and for data analysis, we have devel-
oped a wrapper for SPIFFE that allows for the con-
struction of simulations inside of python functions.
This is a convenient way to not only script simula-
tion scans but also to interface with the broad range
of optimization algorithms available in python and its
associated packages.

In this paper we describe the basic structure of the
wrapper and provide sample code to demonstrate its
use. The wrapper is available upon request via email
to the authors and a published version of the code
will hopefully be made available shortly.

2 Python wrapper of SPIFFE

In order to facilitate the use of SPIFFE in optimiza-
tions using the python toolboxes we constructed a
wrapper that can interpret python commands that
will build and run a SPIFFE simulation. The only
python libraries needed in the wrapper are os and
os.path. The initialization command will check to
see if the simulation file exists, if it does it will re-
move the file in order to allow for the creation of a
new simulation file. If no input to the initialization
is specified the default file will be removed.

import os
import os.path

def initialize(
simulation_fi1e=’simulation.spiffe’):
if os.path.isfile(simulation_file):
os.system(’rm ’+simulation_file)
return

Each name-list variable in SPIFFE is represented
by a python function whose inputs mirror those ex-
pected by SPIFFE. Additionally each function has
default values that align with the default values ex-
pected by SPIFFE. The specification of default val-
ues removes the need to create exceptions for each
parameter in the name-list variable. These defaults
also make it easier for the user as they do not need
to specify each parameter every time. The functions
build a string that contains all the information for
SPIFFE to properly interpret the simulation block.
Once the string is defined it is written to the simu-
lation file that is specified in the initialization. Each
function returns the string as well if desired. Note
that if the default simulation file is used, no filename
is needed. An example of this code is given here.

def set_constant_fields(
simulation_file=’simulation.spiffe’,
Ez=0,Er=0,Ephi=0,Bz=0,Br=0,Bphi=0) :

linel = ’&set_constant_fields\n’
line2 = ’\t Ez = ’+str(Ez)+’,\n’
line3 = ’\t Er = ’+str(Er)+’,\n’
line4 = ’\t Ephi = ’+str(Ephi)+’,\n’
line5 = ’\t Bz = ’+str(Bz)+’,\n’
line6 = ’\t Br = ’+str(Br)+’,\n’
line7 = ’\t Bphi = ’+str(Bphi)+’,\n’
line8 = ’&end \n’

output =

linel+line2+line3+line4+lineb+line6+1line7+1ine8

fsim = open(simulation_file,’a’
fsim.write(output)
fsim.close()

return output

After each of the simulation blocks have been de-
fined the user must then run the simulation using the
simulate command in the wrapper.

def simulate(

simulation_file=’simulation.spiffe’):
command = ’spiffe ’+simulation_file
os.system(command)

Note that if no simulation file is given the default
simulation fill will be run. Next we provide an exam-
ple of how the simulation is constructed in python.
We begin by importing the wrapper then define the
simulation parameters to be used in the simulation.
This is followed by calling each command that we
wish SPIFFE to execute. Finally the simulate com-
mand is issued which will run the simulation. This
can be collected into a python function that is called
as part of a parameter scan or an optimization.

from subSpiffe import *

Here the simulation parameters are defined.
nZ = 200

zMin = 0

zMax = 0.1

nR = 200

rMax = 0.1

fn_geo = ’simulation.geo’
dt_integration = 1.1e-13
start_time = 0.0
finish_time = 2.0e-13
status_interval = 100
space_charge = 0

Initialize the simulation
initialize()

Make geometry block
define_geometry(nz=nZ,zmin=zMin,zmax=zMax,
nr=nR,rmax=rMax,boundary=fn_geo,
boundary_output=fn_geo+’.bnd’)

Save fields for analysis
define_field_output(filename=’simulation.fld’,
time_interval=dt_integration,
Zz_interval=5,r_interval=5)

The poisson correction is added
poisson_correction(step_interval=1)

Add external fields (0.1 T magnetic field to
confine the beam)
set_constant_fields(Bz=-0.2)

Define the emitter
define_emitter(temperature=1000.0,
material_id=2,
number_per_step=10,work_function=2,
electrons_per_macroparticle=1.0e5,
stop_time=1.0e-6)

Get beam snapshots

define_snapshots(filename=’simulation.snap’,
time_interval=dt_integration*100)

Screen
define_screen(filename=’simulaiton.screen’,
z_position=0.01,start_time=2.5e-9)

The integration block is created....
integrate(dt_integration=dt_integration,
start_time=start_time,finish_time=finish_time,
status_interval=status_interval,
space_charge=space_charge,
lost_particles=’simulation.lost’)

The full simulation is defined by the
following line and then written to file.
simulate()

in a

3 Setting up SPIFFE
python function

Implementing the simulation inside a python function
is then a fairly straightforward task. For example if
one wanted to study the effects of mesh intervals on
an electrostatic simulation it could be constructed in-
side a python function and then scripted using loops
and numpy arrays. The following code snipit shows
an example of how one might accomplish this by tak-
ing advantage of the the wrapper.

from subSpiffe import *

Global parameters

zMin = 0

zMax = 0.1

rMax = 0.1

fn_geo = ’simulation.geo’
dt_integration = 1.1e-13
start_time = 0.0
finish_time = 2.0e-13

status_interval = 100
space_charge = 0

def test_simulation(x):
Here the simulation parameters are

defined.
nZ = x[0]
nR = x[1]

output_file =
’simulation’+str(x[0])+’ . +str(x[1])+’.f14d’

Initialize the simulation
initialize()

Make geometry block
define_geometry(nz=nZ,zmin=zMin, zmax=zMax,

nr=nR,rmax=rMax,boundary=fn_geo,
boundary_output=fn_geo+’ .bnd’)

Save fields for analysis
define_field_output(filename=output_file)

The poisson correction is added
poisson_correction(step_interval=1)

The integration block is created....
integrate(dt_integration=dt_integration,
start_time=start_time,finish_time=finish_time,
status_interval=status_interval)

The full simulation is defined by the
following line and then written to file.
simulate()

return

Define mesh parameters for the loop
nZ = numpy.linspace(100,500,10)
nR = numpy.linspace(100,500,10)

Loop over mesh parameters
for i in range(0,len(nZ)):
for j in range(0,len(nR):
test_simulation([nZ[i,j],nR[i,3j]1])

4 Conclusions

In this paper we have described the development of a
wrapper for SPIFFE in python. This wrapper makes
for easy scripting of a fairly well documented and
easy to use electromagnetic PIC solver. This pro-
vides a platform for using python optimization tools
directly with SPIFFE simulations and also creates an
easy way to interact with SPIFFE through python for
users who are quite familiar with python as opposed
to SDDSTools.

5 References

