
Multi-threaded art forum
Kyle J. Knoepfel
15 September 2017



• Education
– We are communicating to you what (using) a multi-threaded art will look like
– We are providing guidance for how you approach multi-threading issues that you will 

encounter

• Your input
– We need your perspective for what behaviors/features are needed/desired
– Each experiment/project using art has different requirements

• This is intended to be an ongoing discussion

Why are we here?

9/15/17 K. J. Knoepfel | MT forum2



• Motivation for a multi-threaded art

• (Some) complications with multi-threading

• art’s approach to implementing multi-threading

For today

9/15/17 K. J. Knoepfel | MT forum3



Motivations for a multi-threaded art

9/15/17 K. J. Knoepfel | MT forum4



• Particle physics relies on statistical independence of events.
– It is fundamentally well-suited for parallel processing of events.

Parallelism and particle physics event processing

9/15/17 K. J. Knoepfel | MT forum5

1 2 3 4 n5 6 7 8 9 .	.	.	.	.	.	.	.	.10 11 12 n-3 n-2 n-1



Results

• Particle physics relies on statistical independence of events.
– It is fundamentally well-suited for parallel processing of events.

Parallelism and particle physics event processing

9/15/17 K. J. Knoepfel | MT forum6

1 2 3 4 n5 6 7 8 9 .	.	.	.	.	.	.	.	.10 11 12 n-3 n-2 n-1



Results

• Particle physics relies on statistical independence of events.
– It is fundamentally well-suited for parallel processing of events.

Parallelism and particle physics event processing

9/15/17 K. J. Knoepfel | MT forum7

1 2 3 4 n5 6 7 8 9 .	.	.	.	.	.	.	.	.10 11 12 n-3 n-2 n-1

• Since events are statistically independent, disjoint collections of events are also 
statistically independent.



Results

Run 2 Run 3Run 1

• Particle physics relies on statistical independence of events.
– It is fundamentally well-suited for parallel processing of events.

Parallelism and particle physics event processing

9/15/17 K. J. Knoepfel | MT forum8

1 2 3 4 n5 6 7 8 9 .	.	.	.	.	.	.	.	.10 11 12 n-3 n-2 n-1

• Since events are statistically independent, disjoint collections of events are also 
statistically independent.



Results

Run 2 Run 3Run 1

• Particle physics relies on statistical independence of events.
– It is fundamentally well-suited for parallel processing of events.

SubRun 2SubRun 1SubRun 2SubRun 1

Parallelism and particle physics event processing

9/15/17 K. J. Knoepfel | MT forum9

1 2 3 4 n5 6 7 8 9

SubRun 1
.	.	.	.	.	.	.	.	.10 11 12 n-3 n-2 n-1

• Since events are statistically independent, disjoint collections of events are also 
statistically independent.



Results

Run 2 Run 3Run 1

• Particle physics relies on statistical independence of events.
– It is fundamentally well-suited for parallel processing of events.

SubRun 2SubRun 1SubRun 2SubRun 1

Parallelism and particle physics event processing

9/15/17 K. J. Knoepfel | MT forum10

1 2 3 4 n5 6 7 8 9

SubRun 1
.	.	.	.	.	.	.	.	.10 11 12 n-3 n-2 n-1

• Since events are statistically independent, disjoint collections of events are also 
statistically independent.

• There are, thus, no fundamental limitations to processing concurrent Events, 
SubRuns, Runs, and Results/input files.



Results

Run 2 Run 3Run 1

• Particle physics relies on statistical independence of events.
– It is fundamentally well-suited for parallel processing of events.

SubRun 2SubRun 1SubRun 2SubRun 1

Parallelism and particle physics event processing

9/15/17 K. J. Knoepfel | MT forum11

1 2 3 4 n5 6 7 8 9

SubRun 1
.	.	.	.	.	.	.	.	.10 11 12 n-3 n-2 n-1

• Since events are statistically independent, disjoint collections of events are also 
statistically independent.

• There are, thus, no fundamental limitations to processing concurrent Events, 
SubRuns, Runs, and Results/input files.

• We are designing a system that recognizes this.



1. Hardware is moving to greater number of cores, and less RAM per core.
2. Reduction in memory use of simulation, reconstruction, and analysis programs 

using art by allowing n working cores to share data between threads.
3. Mitigation of the impact of rare events that are unusually large.
4. Simplification of the description of workflows that process large amounts of data.
5. Improved efficiency of workload scheduling.
6. Reduction of the load on the workflow management system.

Other motivations

9/15/17 K. J. Knoepfel | MT forum12



Multi-threading concepts

9/15/17 K. J. Knoepfel | MT forum13



• Data race:
– when two or more threads attempt to update the state of an object at the same time
– when one thread is reading an object while another thread is updating it

• Data races result of sharing memory among threads.
• If there are no shared objects in your code, then you have no concerns.
• If you do have a shared object and it has mutable state, then you must take steps 

to ensure that data races cannot occur (e.g.):
– Design your code so that there cannot be a data race.
– Use structures that provide atomic operations on the shared data.
– Consider using mutual exclusion to protect the critical regions.

• Easier said than done:
– Any libraries you use may share memory among threads (e.g. ROOT)

Multi-threading pitfalls

9/15/17 K. J. Knoepfel | MT forum14



• Data race:
– when two or more threads attempt to update the state of an object at the same time
– when one thread is reading an object while another thread is updating it

• Data races result of sharing memory among threads.
• If there are no shared objects in your code, then you have no concerns.
• If you do have a shared object and it has mutable state, then you must take steps 

to ensure that data races cannot occur (e.g.):
– Design your code so that there cannot be a data race.
– Use structures that provide atomic operations on the shared data.
– Consider using mutual exclusion to protect the critical regions.

• Easier said than done:
– Any libraries you use may share memory among threads (e.g. ROOT)

Multi-threading pitfalls

9/15/17 K. J. Knoepfel | MT forum15

Multi-threaded	programs	are	frequently	non-deterministic—
i.e. the	ordering	of	concurrently-executing	tasks	will	not	be	the	
same	from	one	program	execution	to	the	next



• Who owns your module?

• art owns the module objects, which are created at run-time based on the 
configuration you provide.

• You provide the definition of the module class:
– art knows very little of your module’s definition
– art calls module functions via C++ polymorphism

• Suppose art were to call your produce function concurrently on multiple events.

Is your module a shared object?

9/15/17 K. J. Knoepfel | MT forum16



Module examples

9/15/17 K. J. Knoepfel | MT forum17

• We want to create a track from a collection of hits
void TrackMaker::produce(art::Event& e)
{
auto const& hits = e.getValidHandle<Hits>(tag_);
unique_ptr<Track> track = trackFromHits(*hits);

  e.put(move(track)); 
} 



Module examples

9/15/17 K. J. Knoepfel | MT forum18

• We want to create a track from a collection of hits

• Assuming trackFromHits does not update any state, then this produce function 
is thread-safe—i.e. it can be called concurrently with different art::Event
objects.

• Why?
– art guarantees that product retrieval and insertion is thread-safe
– the produce function above modifies no state of the TrackMaker object

void TrackMaker::produce(art::Event& e)
{
auto const& hits = e.getValidHandle<Hits>(tag_);
unique_ptr<Track> track = trackFromHits(*hits);

  e.put(move(track)); 
} 



Module examples

9/15/17 K. J. Knoepfel | MT forum19

• Suppose we want to add an event counter:

• Is this thread-safe?

void TrackMaker::produce(art::Event& e)
{
++nEvents_;

  // ...                                                                        
} 



Module examples

9/15/17 K. J. Knoepfel | MT forum20

• Suppose we want to add an event counter:

• Is this thread-safe?

• Answer: it depends on the type of nEvents_:
– If the type is an integral fundamental type (e.g. unsigned int), then no, it is not thread-

safe, since operator++ requires a read and then write.
– If the type is an std::atomic<unsigned int>, then yes, it is thread-safe.

void TrackMaker::produce(art::Event& e)
{
++nEvents_;

  // ...                                                                        
} 



Module examples

9/15/17 K. J. Knoepfel | MT forum21

• Suppose we want to add an event counter:

• Is this thread-safe?

• Answer: it depends on the type of nEvents_:
– If the type is an integral fundamental type (e.g. unsigned int), then no, it is not thread-

safe, since operator++ requires a read and then write.
– If the type is an std::atomic<unsigned int>, then yes, it is thread-safe.

void TrackMaker::produce(art::Event& e)
{
++nEvents_;

  // ...                                                                        
} 

• Determining	thread-safety	of	module	code	takes	analysis.
• art will	provide	various	module	types	that	tell	the	framework	whether	a	

given	module	can	support	multi-threaded	processing



• Functions (free or member) which access a global object whose state can change, 
including non-const function-scope static data.

• Functions (free or member) which change the state of objects which were passed 
as const function arguments (e.g. casting away const on an argument).

• const non-static member functions which modify the state of the object on 
which they are called (e.g. mutable members, or casting away const on this).

• Pointer member data or data held by member data being passed as a non-const
argument to functions.

• const member functions returning values of member variables which are pointers 
to non-const items.

Indications of thread-unsafe C++ code

9/15/17 K. J. Knoepfel | MT forum22



• Apply const liberally
• Avoid using non-const static variables in functions/classes
• To the extent possible, do not use the mutable keyword
• Use as few global objects as possible
• If you must use a global object, provide only const-qualified interface

General guidelines

9/15/17 K. J. Knoepfel | MT forum23



• Apply const liberally
• Avoid using non-const static variables in functions/classes
• To the extent possible, do not use the mutable keyword
• Use as few global objects as possible
• If you must use a global object, provide only const-qualified interface

General guidelines

9/15/17 K. J. Knoepfel | MT forum24

All	of	these	are	good	ideas	for	single-threaded	code.		
You	can	do	this	now!



art’s approach to implementing multi-threading

9/15/17 K. J. Knoepfel | MT forum25



• The design of a multi-threaded framework should be based on fundamental 
principles, not on the limitations of external dependencies.
– The relevant questions are:

• In what contexts does multi-threading make sense?
• In what contexts does multi-threading not make sense?
• Not, when can we do multi-threading and when can we not.

– The implementation must accommodate any limitations, not cater to them.

Approaching the design

9/15/17 K. J. Knoepfel | MT forum26



• The design of a multi-threaded framework should be based on fundamental 
principles, not on the limitations of external dependencies.
– The relevant questions are:

• In what contexts does multi-threading make sense?
• In what contexts does multi-threading not make sense?
• Not, when can we do multi-threading and when can we not.

– The implementation must accommodate any limitations, not cater to them.

• We have striven for a balance between complexity and efficiency:
– Our preference is to have a slightly less efficient, easier-to-understand system than a 

slightly more efficient, difficult-to-understand system.

Approaching the design

9/15/17 K. J. Knoepfel | MT forum27



• “No framework code is so precious that it must be saved; nothing is untouchable. 
Our users' code is precious, and we should break as little of it as possible.”

• To the extent possible, the user interface should reflect only physically meaningful 
concepts—i.e. those concepts that are already known to art users: Results, Run, 
SubRun, and Event.  It should not reflect implementation details.
– Exceptions to this could be for those developing services or other more-expert facilities 

than modules.

User interface

9/15/17 K. J. Knoepfel | MT forum28



• Largely based off of CMSSW’s design
– We use Intel’s Threading Building Blocks (TBB)
– Steps to be performed are factorized into tasks
– You can think of a call to your module’s “produce” function as performing a task

• Users specify the number of concurrent event loops and (optionally) the maximum 
number of threads that the process can use.

• Each loop processes one event at a time.

The design

9/15/17 K. J. Knoepfel | MT forum29

Run 1 .	.	.
Run 1

Run 1

Run 4

Run 2

Run 3

Run 4

Run 4

.	.	.
.	.	.

Begin
Job

Our	goal:



• Largely based off of CMSSW’s design
– We use Intel’s Threading Building Blocks (TBB)
– Steps to be performed are factorized into tasks
– You can think of a call to your module’s “produce” function as performing a task

• Users specify the number of concurrent event loops and (optionally) the maximum 
number of threads that the process can use.

• Each loop processes one event at a time.

The design

9/15/17 K. J. Knoepfel | MT forum30

Currently	implemented:

1 4 6 9

2 5

3

7 8

10

11

12

Begin 
R1

Begin
SR1

End
SR1

End 
R1

Begin 
R2

Begin
SR 1

1

2

4

5

3

.	.	.
.	.	.

Begin
Job



• Largely based off of CMSSW’s design
– We use Intel’s Threading Building Blocks (TBB)
– Steps to be performed are factorized into tasks
– You can think of a call to your module’s “produce” function as performing a task

• Users specify the number of concurrent event loops and (optionally) the maximum 
number of threads that the process can use.

• Each loop processes one event at a time.

The design

9/15/17 K. J. Knoepfel | MT forum31

Currently	implemented:

1 4 6 9

2 5

3

7 8

10

11

12

Begin 
R1

Begin
SR1

End
SR1

End 
R1

Begin 
R2

Begin
SR 1

1

2

4

5

3

.	.	.
.	.	.

Begin
Job

.	.	.



• Largely based off of CMSSW’s design
– We use Intel’s Threading Building Blocks (TBB)
– Steps to be performed are factorized into tasks
– You can think of a call to your module’s “produce” function as performing a task

• Users specify the number of concurrent event loops and (optionally) the maximum 
number of threads that the process can use.

• Each loop processes one event at a time.
• Different modules will also be able to be run in parallel on the same event.
• Users are allowed to use TBB’s parallel facilities within their own modules.

The design

9/15/17 K. J. Knoepfel | MT forum32



• The first release with multi-threaded art will be version 3.0.
• Our intention is that all currently-provided features will still be supported
• Standard guidance for art usage is very important:

– No communication between modules
– The order in which paths are executed is unspecified—you cannot rely on any specific 

ordering
• Take advantage of the consumes interface:

– catch data-dependency errors in your workflow
– art may be able to optimize your program execution based on the information you provide 

via consumes.

General statements—art

9/15/17 K. J. Knoepfel | MT forum33



• If you are using configuration validation, all validation must happen at plugin 
construction time (the general use case)

• If you are invoking art::make_tool, that must happen at plugin construction time 

General statements—plugin configuration/construction

9/15/17 K. J. Knoepfel | MT forum34



• art guarantees that any currently-existing modules (to within some interface 
changes) will be usable in a multi-threaded execution of art.
– No multi-threading benefits will be realized with such “legacy” modules

• To take advantage of art’s multi-threading capabilities, users will need to change 
the kind of module they use:
– Serialized module: use if the facilities you are using do not allow for concurrent execution 

and you must see all events
– Per-event loop module: for a configured module, one copy of that module is produced 

per event loop—each module copy sees one event at a time.  Use if moving to a fully 
concurrent module is unfeasible

– Fully concurrent module: module functions can be called concurrently without any data 
races

General statements—modules

9/15/17 K. J. Knoepfel | MT forum35



• The activity registry is likely to change (adjustments to some callbacks, addition of 
others)

• All art-provided services that are intended to be used in a multi-threaded context 
are thread-safe.

• There are some services that cannot be thread-safe (e.g. TFileService)
– We will provide you with instructions as to how they can be used

• Generally speaking, all of your services must be thread safe

General statements—services

9/15/17 K. J. Knoepfel | MT forum36



• Many preparatory changes over the last year
– State machine has been removed
– Relevant services have made thread-safe
– All registries have been made thread-safe
– consumes interface has been introduced

• Multi-threaded implementation was just committed last week:

art’s status

9/15/17 K. J. Knoepfel | MT forum37



• Before we release art 3.0, we need your input:
– What behavior will be needed for the concurrent-aware modules?
– Are there specific constraints your experiment has regarding processing sub-runs 

concurrently?
– What is the desired reproducibility/replayability behaviors for the 
RandomNumberGenerator service?

– Do you explicitly use TriggerResults objects?
– etc.

Next steps

9/15/17 K. J. Knoepfel | MT forum38

Over	the	next	few	weeks,	we’ll	explore	these	issues.


