
Mu2e Project DOCDB Document No.

Mu2e-doc-6697
FNAL Div./Group or Supplier/Contractor Document No.

TD/MSD
TD Engineering Document No.

xxxx

Date: 2016-02-05

Final Design Specifications

EMMA FOR FMS

Abstract
This document describes the design specifications for the FMS software system.

Prepared by :
J. Nogiec

Checked by :
L. Elementi, S. Feher, H.
Friedsam, J. Grudzinski,

M. De L. Lopes, B.
Pollack, M. Schmitt, T.

Strauss, R. Talaga, R. G.
Wagner, J. L. White, H.

Zhao

Approved by :
M. Lamm

Circulated to:
A. Hocker, K. Krempetz, M. Tartaglia

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 2 of 34

History of Changes

Rev. No. Date Pages Description of Changes

0.1

 0.2

2016-02-05

2016-02-29

All

All

First draft of the document

First version of the document

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 3 of 34

Table of Contents
1. INTRODUCTION .. 5

1.1 PURPOSE .. 5
1.2 SCOPE .. 5

2. FMS FUNCTIONALITY .. 5

3. EMMA FRAMEWORK .. 5

3.1 ARCHITECTURE ... 5
3.2 EMMA COMPONENTS .. 6
3.2.1 CONTROLS AND DATA-DRIVEN PROCESSING ... 7
3.2.2 COMPONENT DYNAMIC MODEL... 7
3.2.3 COMPONENT PROPERTIES ... 9
3.2.4 ERROR REPORTING .. 9
3.3 CONFIGURATION ... 9
3.4 RUN-TIME DIAGNOSTICS .. 10
3.5 MEASUREMENT AUTOMATION ... 11

4. FMS DAQ CONFIGURATION ... 12

5. FMS ORGANIZATION ... 12

5.1 FMS COMPONENTS ERROR! BOOKMARK NOT DEFINED.
5.2 DATA FLOW ERROR! BOOKMARK NOT DEFINED.

6. MEASUREMENT AUTOMATION ... 13

6.1 ALGORITHM .. 13
6.2 PARAMETER FILE ... 14

7. FMS COMPONENTS .. 15

7.1 TRACKER COMPONENT ... 15
7.2 MOTION COMPONENT... 17
7.3 HALL COMPONENT ... 19
7.4 NMR COMPONENT .. 20
7.5 CURRENT COMPONENT ... 21
7.6 POSITIONING COMPONENT ... 22
7.7 FIELD COMPONENT .. 22
7.8 QA COMPONENT ERROR! BOOKMARK NOT DEFINED.
7.9 ARCHIVER COMPONENT .. 22
7.10 USER INTERFACE COMPONENT .. 23
7.10.1 CONFIGURATION ... 23
7.10.2 MEASUREMENT ... 24
7.10.3 MOTION ASSESSMENT ... 25
7.10.4 FIELD VISUALIZATION AND ASSESSMENT .. 26

8. SOFTWARE QUALITY ASSURANCE ... 27

9. SUMMARY ... 28

10. REFERENCES ... 28

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 4 of 34

APPENDIX A. DATA CLUSTERS .. 30

APPENDIX B. EXAMPLE SCRIPT FILE ... 33

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 5 of 34

1. INTRODUCTION
This document describes the design of the software for the Field Mapping System (FMS) to be
used in the Mu2e project.

1.1 PURPOSE
To ascertain the correct operation of the Mu2e magnet system, the fields in each of the
solenoids must be measured at various stages of installation and commissioning of the system
[1]. A dedicated field mapping system will be developed to perform these measurements.

1.2 SCOPE
This document describes the design of the software for the Mu2e Field Mapping System. The
design is based on the EMMA framework and the development will focus on designing and
implementing components specific to FMS, including DAQ components, data processing
components, user interface components and an automation script. This is reflected in the
contents of this document, which includes first an overview of the EMMA framework that
defines the architecture of the system, followed by descriptions of the FMS-specific
components, data management and user interfaces. The software quality assurance measures
used during production of the software are also addressed in this document.

2. FMS FUNCTIONALITY
The FMS software system will encompass several functions:

• Controlling the automatic execution of measurements.
• Visualizing the status of the measurement
• Archiving the raw and reduced data.
• Allowing manual control of the power supply and field mapping motion system.
• Providing readout of Hall probes, NMR probe, position and current.
• Monitoring and controlling the field mapping motion system
• Logging significant events and errors

3. EMMA FRAMEWORK
The Extensible Magnetic Measurement Application (EMMA) is a framework developed by the
Software Systems Group of Fermilab’s Technical Division to build magnetic measurement
applications. It is a component-based system, where applications are constructed by
assembling them from its different functional parts. EMMA is extensible and many different
applications can be built by supplying new components and reusing existing system and
domain components.

An EMMA component is designed following the classical object model, where objects are
separate entities with states and defined behavior that communicate via messages.
EMMA components may be distributed over multiple nodes.

3.1 ARCHITECTURE
EMMA’s architectural model requires a very flexible communication mechanism that allows for
exchanging messages between any two components. Its message-oriented architecture is
implemented on a publish-subscribe software bus (Fig. 1), which supports local and remote
communication of components.

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 6 of 34

 Figure 1: Components communicating over a software bus

In the publish/subscribe software bus architectural pattern, components subscribe to specific
topics (types of data messages exchanged on the bus) and publish messages with specified
topics. When a message with a given topic is published on the bus, all the components that
have subscribed for that topic (subscribers) are notified.
A publish/subscribe bus is similar to its hardware equivalent and, in addition to inter-
component communication, also allows for installation, configuration, and removal of
components.
Local components (components located in the same node) communicate via message queues
and remote components. Components residing in different nodes communicate with the bus
via sockets (TCP/IP). Figure 2 shows a real-time display of component’s connectivity and the
topics they are subscribed to, as shown by EMMA.

 Figure 2: Monitoring of component connections

3.2 EMMA COMPONENTS
Each EMMA component has a communication interface (input and output messages),
properties and behaviour (actions in response to received events or hardware events).

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 7 of 34

3.2.1 CONTROLS AND DATA-DRIVEN PROCESSING
A component accepts a set of predefined control event messages and responds to them by
performing certain actions and/or changing its state. There is a common set of system control
events (commands) that all components respond to that will manipulate that component’s
state (Table 1). These commands are sent to the control topic.

Table 1. Standard component control events (commands)
Command Action Reply
init.cmd Initialize component by setting its properties to their initial

values (as specified in the configuration file) and perform
any initialization in preparation for performing its core
functionality.

init.ack

pause.cmd Pause execution of the component pause.ack
run.cmd Resume previously paused execution run.ack
abort.cmd Abort current activity or function abort.ack
exit.cmd Clean up and terminate the component exit.ack

In addition to the standard control events, each component may have one or more specific
controls it reacts to. Typically, after completing the requested function, the component sends
an acknowledgment, which could be positive (ACK) if the operation succeeded or negative
(NACK) otherwise.

Components can also receive data events. Upon receipt of a data event, the component
processes its contents and, optionally, sends one or more messages. User interface
components display the contents of the received data events, and data saving components
archive or persist the received data.

3.2.2 COMPONENT DYNAMIC MODEL
A component’s behaviour is specified as a state machine. State machine diagrams are defined
externally as matrices, which allows for easy modification of behaviour (Fig. 3).

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 8 of 34

 Figure 3: Component state machine matrix

A component is in a specific state when it receives an event. The state machine matrix for that
component defines the action that will be taken given the topic, the component’s state, the
received event, and a modifying condition. These modifying conditions can be different for
each sending component. An example of a condition is a specific sender component, which
means that only events from that component will be taken into account when processing the
row.

A standard dynamic model of a component is shown in Figure 4.

 Figure 4: Component dynamic model (state diagram)

Each EMMA component runs in a separate thread and can have one or more additional parallel
threads for asynchronous monitoring and control.

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 9 of 34

3.2.3 COMPONENT PROPERTIES
Each component has a number of properties that can be both modified and read, that alter or
influence the execution of the component’s methods by specifying parameters for data
acquisition, motion, current control, etc.

The following are the standard property manipulation commands that are sent on the
property topic:

Table 2. Standard EMMA property events
Command Parameters Action Reply Parameters
set.cmd [property1= value]+

Set listed properties
to given values

set.ack None

get.cmd [property]+ Return values of listed
properties

get.dat [property1= value]+

state.cmd None Return current state
of the component

state.dat state

[contents]+ denotes an array of one or more elements of specified contents.

3.2.4 ERROR REPORTING
An EMMA component broadcasts an error.dat event on the control.system topic whenever
an exception is detected. It also automatically generates a log.dat event sent to the data.log
topic to record the error.

3.3 CONFIGURATION
EMMA applications are configurable. The system to be executed is specified in a configuration
stored in an INI file. The INI file format is an informal standard for configuration files on some
platforms and software. INI files are simple text files with a basic structure composed of
sections that contain properties with their values.
The EMMA INI file consists of three mandatory sections (Fig. 5):

• system – includes the default system/application properties, which will be substituted
with the actual values by the EMMA framework

• components – a list of non-system components to be started
• events – a set of initial events to be sent upon completion of start-up.

The standard sections are followed by component sections. Each component has its own
section in which the user/configurer specifies specific property values for that component. Each
property is a name-value pair, where name is the property name and value its associated
value. For instance, system = FMS assigns value FMS to a property named system.

https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Configuration_file
https://en.wikipedia.org/wiki/Platform_%28computing%29
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/INI_file%23Format
https://en.wikipedia.org/wiki/Key-value_pair

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 10 of 34

 Figure 5: Structure of the EMMA configuration file (INI file)

3.4 RUN-TIME DIAGNOSTICS
The EMMA framework allows for examining a component’s connectivity on the
software bus and for monitoring communication on the bus.

 Figure 6: Event flow display

 ; Initial values of system properties
[system]
systemProperty_1 = value_1
systemProperty_2 = value_2
…
; Non-standard (system- specific) components
[components]
component_1 = local:pathToVI ; local component
component_2 = remote:pathToVI ; remote component
…
; Automatic initialization events: topic:event = parameter
[events]
control:init.cmd = NONE
control.component_1:connect.cmd = NONE
…
; Properties of components: property = value
[component_1]
property_1.1 = value_1
property_1.2 = value_2
…
 [component_n]
property_n.1 = value_1
property_n.2 = value_2
…

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 11 of 34

3.5 MEASUREMENT AUTOMATION
Measurement automation is achieved via a control script. The control script communicates with
components via the software bus, directing a sequence of execution that follows a
measurement algorithm. The script does not normally process any data, but fulfills a purely
controlling role by sending and receiving control events that direct hardware motion and
component output signals, trigger data acquisition, and controls data processing and data
archiving. The script can also modify a component properties. An EMMA script is not intended
to contain any measurement parameters, which are intended to be read from a separate
parameter file.
The measurement scripts are written in Python, and are developed with help of the EMMA
Python API, which provides the necessary message-based communication primitives. The
scripting API has a layered design with primitives from each layer using the lower layer
primitives for their implementation.

The scripting API layers in the order of increasing abstraction level are:

• Message layer
• Event layer
• Application

Table 3: EMMA scripting API
Primitive Calling sequence Description
Message Layer
recvMsg messageString = emma.recvMsg

(timeout)
Receive a message string or
timeout.

sendMsg emma.sendMsg (messageString) Send a message string
Event Layer
sendEvent emma.sendEvent (format, topic,

event, data)
Send event of specified format,
topic, event, and data.

recvEvent (f, t, e,c, d) = emma.recvEvent
(timeout)

Receive event or timeout. The
event contains format, topic,
event, sender component and
data attributes.

awaitEvent (f, t, e, c, d) = awaitEvent (topic,
event, sender, timeout)

Await a specified event or
timeout. An asterisk in a field
denotes that any value would be
acceptable.

Application Layer
sendCmd sendCmd (topic, event)

Send command (a simple event)

setProperty setProperty (topic, event, property,
value)

Set property by sending an event
with property name and value to
an intended recipient defined by
topic and event.

log log (text)

Write a given entry (text) to the
system log.

rpc (f, t, e, c, d) = rpc (topic, event, Send an event to a given topic

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 12 of 34

replyTopic, replyEvent, sender,
timeout)

and await a reply event from a
specified sender component on a
reply topic. Time-out if there is no
reply in a specified time.

4. FMS DAQ CONFIGURATION
The FMS software system runs on a host computer equipped with two network interface cards
and accesses its instrumentation via a private LAN (see Fig. 7).

Figure 7: FMS hardware configuration

The FMS instrumentation integrates with the host computer via a private Ethernet
subnet consisting of the following devices:

• National Instruments (NI) CompactRIO crate with the VxWorks RTOS and:
o NI 9881 CANopen module to provide access to Hall probes
o NI 9239 24-bit ADC with input isolation and antialiasing filter, to provide

readout of current as a voltage on a shunt resistor.
• Metrolab PT2026 NMR magnetometer, for precise field measurements.
• FMS motion system.
• Leica AT401 laser tracker system, to provide precise positioning of the

magnetometer ion system and the Hall probe sensors mounted on it.

5. FMS ORGANIZATION
The EMMA based FMS includes several specialized components that form the core of the
system. The Hall, NMR and Current data acquisition components acquire data in response to
commands from Script. The Position component coordinates the positioning of the system by

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 13 of 34

interacting with the Motion component, which is responsible for moving the field mapper, and
the Tracker component, which provides information about the precise current location of the
field mapper. All acquired data is collected and combined by the Data component. The field
data is processed in the Field component, which provides visualization of the data and allows
for comparison of the results to values predicted by the model of the field. The resulting flow
of data between components is shown in Fig. 8. Appendix A contains a description of the data
exchanged by the system.

 Figure 8: Measurement data flow

6. MEASUREMENT AUTOMATION
The field mapping measurement is fully automated and will not require user interaction. The
automation will be provided by a Python script controlling the motion system and readout
components. The script will contain only the algorithm; the measurement parameters will be
read from a parameter file.

6.1 ALGORITHM
The measurement will be done at varying longitudinal and angular positions. For each
longitudinal position a number of angular positons will be assumed and data will be taken at
each angle. The measurement will include readouts of all Hall sensors, Hall sensor
temperatures, the NMR sensor, positions of propellers and the current in the magnet.

The measurement model is a series of steps, each with a unique identifier. The step identifier
is composed from two numbers:

• a sequential linear position number, and
• a sequential angular position number for the current linear position.

For example, the identifier 11.22 is a readout at the linear position 11 and the angular
position 22.

The field mapping algorithm is shown below (Fig. 9).

Tracker

NMR

Current

Motion

Hall Data Field

UI

Archiver

Position

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 14 of 34

Figure 9: Field mapping control algorithm

6.2 PARAMETER FILE
The parameter file contains the specification of longitudinal and angular positions as well as
acceptable positioning errors and current stability limits. The measurement space can be
divided into multiple measurement regions, each with a different granularity of field mapping
positions. See Figure 10 for an example parameter file.

 try {

; initialization phase ----------------
start(RUN) ;announce start of new RUN
readParameters() ;read parameters from the parameter file
initializeComponents() ;initialize all components and wait until they are all ready
move (Motion, HOME) ;move mapper to HOME position

; measurement phase -------------
for position in linearPositions { ;iterate over linear positions
 start(POSITION)) ;announce start of new POSITION
 read(Tracker, referenceTargets) ;read location of reference (stationary) targets
 move(Position, position) ;advance to the next position
 for angle in angularPositions { ;iterate over all angular positions
 start(STEP) ;annoubce start of new STEP
 rotate(Position, angle) ;advance to next angular position
 read(Tracker, measurementTargets) ;read location of measurement targets (probe location)
 read(Motion) ;read posiiton from Motion subsystem
 read(Hall) ;read Hall probes (3D Hall elements and temperature)
 read(NMR) ;read field from NMR device
 read(Current) ;read current in the magnet
 await(Archiver, ACK) ;wait unitl processing and data saving is done
 end(STEP) ;announce end of step
 }
 end(POSITION)) ;announce end of POSITION
}
end(RUN)) ;announce end of RUN

: termination phase -------------------
} catch (Exception) {
 report(error)
} finally {
 abort(ALL)
}

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 15 of 34

Figure 10: Script parameter file

The magic number defined in the file allows the script to verify that the file is a parameter file
belonging to the FMS system.

7. FMS COMPONENTS

7.1 TRACKER COMPONENT
The Tracker component implements access to the Leica Absolute Laser Tracker AT401[8]
connected to the FMS via Ethernet. The component will initialize the laser tracker and read the
position of multiple targets. There will be two groups of targets:

• the Reference group, including targets mounted on the Mu2e solenoids and possibly
on the walls, and

• the Measurement group, including targets mounted on the propellers of the field
mapper device.

The input events (messages), the actions that they trigger, and the resulting output events are
summarized in Table 4.

Table 4. Tracker component events
Command Topic Action Reply Topic
init.cmd control Initialize component by setting its properties

to their initial values (as specified in the
configuration file) and perform any
initialization in preparation for performing its
core functionality.

init.ack control

read.cmd control Read position of a specified target

read.ack
tracker.dat

control
data

pause.cmd control Pause execution of the component pause.ack control
run.cmd control Resume previously paused execution

run.ack control

abort.cmd control Abort current activity or function

abort.ack control

; FMS parameter file
; Author: J. Nogiec
; 02/22/2016

Magic.number = FMS.123.57456

; region definitions in respect to HOME position
region.start = {0, 1000, 10000} ; region beginning in [mm]
region.end = {1000, 10000, 12000} ; region end in [mm]
region.linearStep = {50, 100, 50} ; linear step in [mm]
region.angularStep = {5, 5, 5} ; angular step in [deg]

; max allowed differences from an expected value
move.error = 1 ; linear positioning required precision [mm]
rotation.error = 0.1 ; angular positioning required precision [deg]
current.error = 1 ; max current change during measurement [Amp]

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 16 of 34

exit.cmd control Clean up and terminate the component exit.ack control

The tracker component communicates with the laser tracker over Ethernet. In response to
init.cmd and read.cmd, the component will exchange a sequence of messages over TCP/IP
using the socket interface. The sequence collaboration diagram describing the exchanges
during initialization and readout are shown in Figures 11 and 12 respectively.

Figure 11: Initialization collaboration diagram for the tracker component

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 17 of 34

Figure 12: Readout collaboration diagram for the tracker component

7.2 MOTION COMPONENT
The Motion component encapsulates the functionality of the FMS motion system (the so-called
mapper) [8]. It will be used to control the motion system and to monitor its status and
position. The communication with the motion system will be implemented over Ethernet.

The input events (messages), the actions that they trigger and the resulting output events for
the Motion component are summarized in Table 5.

Table 5. Motion component events
Command Topic Action Reply Topic
init.cmd control Initialize component by setting its properties

to their initial values (as specified in the
configuration file) and perform any

init.ack control

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 18 of 34

initialization in preparation for performing its
core functionality.

read.cmd control Read position and status

read.ack
motion.dat

control
data

move.cmd control Move to a new linear position or HOME move.ack control
rotate.cmd control Move to a new angular position or HOME rotate.ack control
pause.cmd control Pause execution of the component pause.ack control
run.cmd control Resume previously paused execution run.ack control
abort.cmd control Abort current activity or function

abort.ack control

exit.cmd control Clean up and terminate the component exit.ack control

While implementing initialization and requesting the motion system to move linearly or rotate,
a sequence of events (messages) have to be exchanged between the motion system, the
requesting component (Script component), and the motion component. The sequence
diagrams for the initialization operation and for motion requests (move or rotate) are shown in
figures 13 and 14 respectively.

Figure 13: Motion system initialization sequence

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 19 of 34

Figure 14: Motion system motion request collaboration diagram

7.3 HALL COMPONENT

The Hall component is responsible for acquiring data from all Hall probes configured in the
FMS. It communicates with these probes via the CANopen communication protocol and device
profile specifications, and uses the CAN (Controller Area Network) bus to provide the physical
and data link communication layers [5].

Figure 15: CANopen and CAN in the OSI communication model

To trigger the read-out of all of the Hall probes (each containing three Hall sensors and one
temperature sensor), a CANOpen SYNC message is sent by the component. After receiving this
message the CAN bus module starts up a sequence of AD-conversions simultaneously on all
sensors and subsequently reads the converted analog inputs and sends the values, one-by-
one, in a sequence of messages on the CAN bus.

The Hall component will execute on the target CompactRIO crate under the VxWorks RTOS and
connect to the host Windows computer running EMMA. It will use NI 9881 CANopen module [4]
to transmit and receive Process Data Objects containing acquired signals.

https://en.wikipedia.org/wiki/Protocol_%28computing%29

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 20 of 34

Figure 16: NI 9881 high-speed CANopen C Series module

Table 6. Hall component events
Command Topic Action Reply Topic
init.cmd control Initialize component by setting its properties

to their initial values (as specified in the
configuration file) and perform any
initialization in preparation for performing its
core functionality.

init.ack control

read.cmd control Read all Hall probes

read.ack
hall.dat

control
data

pause.cmd control Pause execution of the component pause.ack control
run.cmd control Resume previously paused execution run.ack control
abort.cmd control Abort current activity or function abort.ack control
exit.cmd control Clean up and terminate the component exit.ack control

7.4 NMR COMPONENT
Nuclear Magnetic Resonance (NMR) is the most precise technology used to measure magnetic
fields. The PT2026 magnetometer from Metrolab that is planned to be used in the system
employs a pulsed-wave (PW) NMR detector and can achieve precision of 10 parts per billion
[6]. The device will be connected via Ethernet.
The NMR component will be developed using the instrument driver supplied by the
manufacturer, which provides an application programming interface for this device. The actual
exchange of messages between the magnetometer device and the host computer is
encapsulated in the API.
The component will initialize the NMR instrument in response to the init.cmd and read the
field value in response to the read.cmd from the script or a test component.

Figure 17: Metrolab PT2026 magnetometer

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 21 of 34

Table 7. NMR component events
Command Topic Action Reply Topic
init.cmd control Initialize component by setting its properties

to their initial values (as specified in the
configuration file) and perform any
initialization in preparation for performing its
core functionality.

init.ack control

read.cmd control Read the field value

read.ack
nmr.dat

control
data

pause.cmd control Pause execution of the component pause.ack control
run.cmd control Resume previously paused execution run.ack control
abort.cmd control Abort current activity or function abort.ack control
exit.cmd control Clean up and terminate the component exit.ack control

7.5 CURRENT COMPONENT
The measured value of magnet current is expected to be distributed in a form of a current loop
and will be read by the FMS Current component as the voltage on a shunt resistor. Using the
shunt calibration value, the current in the solenoid magnet will be calculated.
The component will execute on the CompactRIO target under the VxWorks RTOS and will use
NI 9239 Simultaneous Analog Input module, a C Series 24-bit ADC with antialiasing filter and
isolation (Fig. 18).

Figure 18: NI 9239 24-bit Analog Input module

The current component will respond to the events listed in Table 8.

Table 8. Current component events
Command Topic Action Reply Topic
init.cmd control Initialize component by setting its properties

to their initial values (as specified in the
configuration file) and perform any
initialization in preparation for performing its
core functionality.

init.ack control

read.cmd control Read the value of current

read.ack
current.dat

control
data

pause.cmd control Pause execution of the component pause.ack control

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 22 of 34

run.cmd control Resume previously paused execution run.ack control
abort.cmd control Abort current activity or function abort.ack control
exit.cmd control Clean up and terminate the component exit.ack control

7.6 DATA COMPONENT
The Data component is a simple data integrator, which combines all data acquired during each
step of the measurement execution. It is a purely data driven component and, therefore, it
responds only to the standard control events.

7.7 POSITION COMPONENT
The Position component receives requests from the Script component to place Hall probes in a
particular location prior to taking the data. It uses the precise location information from the
laser tracker (the Tracker component) and is capable of adjusting the position to the required
place within the given tolerance. During the positioning process, the component will have to
transform the laser tracker data to the coordinate system of the motion system. It will also
calculate positioning errors to be displayed on the UI.

7.8 FIELD COMPONENT
The Field component is data driven. It receives data from each measurement step from the
Data component, and processes field data from Hall probes using the positioning data from the
Tracker component and the calibrations of the Hall probes. It may also apply temperature
corrections to the Hall sensor data. The field map data will be transformed to a coordinate
system suitable for displaying field maps.
The Field component will also compare the calculated field data with the data generated for the
same locations using the model of the measured magnet. The results of these calculations will
be sent to the User Interface component for visualization.

7.9 ARCHIVER COMPONENT
The Archiver component will persist (save) the various data records (clusters) sent to it,
including the following data:

• Header data containing main system and configuration data
• Laser tracker positioning data for the reference and measurement targets
• Motion system positions
• Field values acquired from Hall sensors
• Temperature data from temperature sensors in the Hall probes
• Current in the magnet
• User generated comments
• Measurement quality assessment data

The archiver will save data in the TDM Streaming format [9], based on the Technical Data
Management (TDM) data model. This is a binary-based file format, capable of streaming data
to disk at high speeds. In addition, TDMS files also contain a header that stores descriptive
information, or attributes, together with the data, so the data is self-describable like XML. The
TDMS files are searchable and can be opened in many common applications, such as Microsoft
Excel and OpenOffice.

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 23 of 34

7.10 USER INTERFACE COMPONENT
The User Interface (UI) component will offer several views, selectable via tabs, including:

• the Configuration View, which allows for configuring the system,
• the Measurement View, which supports automated and manual measurements and

shows positioning, field, temperature and current data.
• the Motion Assessment View, which shows the accuracy of the positioning of the

sensors.
• the Field Analysis View, which displays the measured field and provides an

assessment of its agreement with those values projected by the magnet model.

7.10.1 CONFIGURATION

Figure 19: The UI and the Configuration View

Some features in the user interface are shared between all of its tabs. Figure 19 shows the
configuration panel in the UI. However, the information bar at the top of the UI, the
measurement information and controls panel at the upper left, and the Operation History panel
at the lower left are displayed for each of the tabs in the tabbed panel that covers most of the
UI on the lower right. In addition to the time, user, and computer/machine information shown
at the top, there are basic control buttons and status indicators for parts of the measurement
system in the topmost common panel.

The upper left panel will display the general system and measurement information (as
labelled) when the measurement is running.

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 24 of 34

The “Operation History” panel shows a log of the measurement system activity. Items in
green indicate successful completion of the activity. Items in red indicate errors or problems
in execution. White indicates items that are neutral. The last item is always blue, an indicator
of the current activity.

The Configuration tab displays panels for user and magnet information, the configuration file,
the script and parameter files, measurement configuration metadata, and measurement
components. The instruction sequence is listed at the bottom.

When configuration the system, the first three panels must be activated in sequence. A
configuration file entry is not allowed until the user and magnet names are entered and the
“Apply” button pressed. Likewise, the script and parameter files entries are not allowed until
the configuration file is entered and the “Start” button pressed. When the script information is
entered, pressing the “Apply” button enables the other panels, which display information.
Configuration data is shown in the Metadata panel. The components selected for performing
the measurement are shown in the “Components” panel.

7.10.2 MEASUREMENT

Figure 20: The Measurement View

The measurement tab (Fig. 20) shows several charts/meters in panels that display
measurement information.

The “Manual” and “Readout” panels along the right margin are for manual control and readout,
and are not used for automated measurements. They are only operational when the script is
not running. Manual operations are intended to be used to check the system before actual
measurements are started.

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 25 of 34

The “Step, mm” and “Step, degree” fields are used to set the distance and/or angle from the
present position(s) of the mapper/propeller. Once the fields have been set, pressing the green
arrows moves in the direction indicated by the arrow. To return either the mapper or the
propellers to their home positions home buttons are pressed (“Move” or “Rotate”).
Checkboxes are used to select which parts of the measurement system are read (magnet
current, laser tracker, Hall, or NMR probes). Data is obtained when the “Read” button is
pressed, which is then shown in the “Readout” panel.

For automated measurements, the script is started by pressing the “Run” button located near
the upper left of the UI. For both manual and automated measurements, measurement
information is shown on the meters and plots. The mapper position and propeller angles are
shown at the top. Hall and NMR probe readings are plotted in the chart just underneath the
position panel. One can choose the probe data to display by clicking on the key to the right of
the plot. Note in Figure 20 that Hall 5 is not being displayed.

The next plot shows temperature data, and finally, the bottom plot shows magnet current
data.

All plots are implemented like strip charts, showing measured data vs. time.

7.10.3 MOTION ASSESSMENT

Figure 21: The Motion Assessment View

The motion analysis tab (Fig. 21) shows the deviations of the measured positions from the
requested positions (in mm. Each of the four targets placed on the largest propeller are
sensed by the laser tracker. The positions of the mapper through the magnet, and the angular
position of the propeller are measured. The deviations as obtained from each of the reflectors
are then plotted.

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 26 of 34

The top panel contains a plot that characterizes the linear movement of the mapper and shows
the deviations in the positions, as obtained from all four targets, of the mapper as it moves
through the magnet in the Z direction (along the axis of the magnet).

The bottom panel contains two plots that characterize the rotational movement. The first
shows the deviations from the requested angular positions. Ideally, as the propeller rotates,
the blades of the propeller would stay within a plane. In reality, due to motion defects, air
currents, etc. the positions of the targets may move in and out of the plane of rotation by
some amount. The bottom chart plots the deviations from the plane in mm for the four
targets at each of the angular positions. The scrollbar at the bottom of the panel indicates the
longitudinal position of the mapper to show data for different positions on the two
abovementioned plots.

7.10.4 FIELD VISUALIZATION AND ASSESSMENT

Figure 22: The Field Analysis View

Analysis of the field data takes the 3-D information from each probe, applies calibration
information to it, and then performs transformations which convert the data to a cylindrical
coordinate system. The Field Analysis tab shows four plots. Three of these plots are 3-D
surface plots that show the three field components for the z, r, and Φ coordinates.

The fourth plot is an assessment of how well the measured results compare with the expected
results for the measurement. It uses an intensity map to display the deviation of the
measured result from the expected value at each Z position and angle. Green indicates that

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 27 of 34

the measured values are close to the expected values. Blue indicates lower than expected
values, while red indicates that the measured values are larger than expected.

8. SOFTWARE QUALITY ASSURANCE
In order to produce dependable software, the project has to establish appropriate standards,
procedures and processes and assure that these are correctly implemented. This function of
software quality can be extended to include verification and validation to ensure that the
required, correct deliverables are produced.
For this software project a modified Rational Unified Process lifecycle [2] will be adopted. This
lifecycle contains the following phases: inception, elaboration, construction,
transition/deployment, and production/maintenance. For each phase, a different set of
activities is planned, together with documents accompanying them.
This project has been assessed as requiring a moderate quality level, and, according to the
established at the Software Systems Group SQA Practices, it will require specific artefacts
documenting the design, development, testing practices that are commensurate with the
expected quality. These documents are listed in Table 9.

 Table 9: Documents to be developed over development lifecycle
Artefacts/documents
Inception Phase
Project charter/proposal
System requirements
Software requirements
Software requirements review note
Elaboration Phase
Architecture document
Architecture review note
Software development plan with schedule and tasks
Software standards and conventions
Project procedures & practices (including change management)
UI design document
UI review note
Requirements document (supplemented or/and revised)
Software acquisition documents
Data model(s)
Data model review(s)
Construction Phase
Component/subsystem document
Component/subsystem mini review note
Software maintained in source control system
Performance and stress test plan
Performance/stress test results
SIT & ST plan
SIT & ST results report
SIT & ST review note
Transition Phase
Deployment plan
UAT plan
UAT results report
UAT review note
User manual (including exceptions and errors)
Release notes

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 28 of 34

Maintenance
Change request

There will be various techniques and practices employed during development of the
software for the FMS, including:

• Coding guidelines
• Use of revision control system
• A template for developing components
• Component detailed designs documented and reviewed
• Component acceptance guidelines
• Code inspections
• Pair programming for code that is especially difficult to develop or test.
• Test components to accompany functional components
• Testing:

o Component testing
o Integration testing
o Performance and endurance testing
o Acceptance testing

9. SUMMARY
• The FMS is based on the EMMA framework, which is characterized by loosely coupled

modules allowing for concurrent, independent development that is ideal for multi-
person projects, such as the FMS project.

• The EMMA-based measurement systems are configurable from components which are
integrated via a message-based middleware implemented as a software bus.

• The EMMA-based FMS will use a set of specialized components implementing magnetic
field measurements, motion control and positioning monitoring via the laser tracker.
The system will also provide visualization, run-time assessment of the measured field,
and archiving of data.

• FMS measurements will be automated via a parameterized script, with parameters
specifying measurement positions and positioning tolerances.

• The biggest risk in delivering the FMS system on time is associated with availability of
qualified developers to work on this project in the presence of multiple competing
projects and ongoing support activities.

10. REFERENCES
[1] Mu2e Field Mapping System Requirements Document, Mu2e Document Database, Mu2e-doc-

1275
[2] RUP, http://www-01.ibm.com/software/rational/rup/
[3] BsCAN3 a modular 3D magnetic-field sensor system with CANopen interface,

CERN/NIKHEF, http://www.nikhef.nl/pub/departments/ct/po/html/Bsensor/BsCAN3.pdf
[4] NI 9881 CANopen Module for ComapctRIO,

http://sine.ni.com/nips/cds/view/p/lang/en/nid/209998
[5] FMS Hall Probe Holding Fixture, Mu2e-doc-6693
[6] PT2026 NMR Precision Teslameter, Metrolab, http://metrolab.com/wp-

content/uploads/2016/02/PT2026-User-Manual-v1_1r1_1.pdf

http://www-01.ibm.com/software/rational/rup/
http://www.nikhef.nl/pub/departments/ct/po/html/Bsensor/BsCAN3.pdf
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209998
http://metrolab.com/wp-content/uploads/2016/02/PT2026-User-Manual-v1_1r1_1.pdf
http://metrolab.com/wp-content/uploads/2016/02/PT2026-User-Manual-v1_1r1_1.pdf

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 29 of 34

[7] Leica Absolute Tracter AT401, Leica Geosystems, http://w3.leica-

geosystems.com/downloads123/m1/metrology/AT401/brochures/Leica%20Absolute%20Tr
acker%20AT401_en.pdf

[8] DS and PS FMS Motion Control System, Mu2e-doc-6692
[9] The NI TDMS File Format, National Instruments, http://www.ni.com/white-

paper/3727/en/

http://w3.leica-geosystems.com/downloads123/m1/metrology/AT401/brochures/Leica%20Absolute%20Tracker%20AT401_en.pdf
http://w3.leica-geosystems.com/downloads123/m1/metrology/AT401/brochures/Leica%20Absolute%20Tracker%20AT401_en.pdf
http://w3.leica-geosystems.com/downloads123/m1/metrology/AT401/brochures/Leica%20Absolute%20Tracker%20AT401_en.pdf
http://www.ni.com/white-paper/3727/en/
http://www.ni.com/white-paper/3727/en/

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 30 of 34

APPENDIX A. DATA CLUSTERS

Table 1. DAQ data clusters
Field Type Description
Hall Probe Data
Step string DAQ step id: LinearPositionNo.AngularPositionNo
Time double Timestamp
Voltages float[][] X,Y,Z Hall elements for all Hall sensors
Temperature float Hall element temperature
Status string {OK, Err-communication, Err-DAQ}
NMR Data
Step string DAQ step id: LinearPositionNo.AngularPositionNo
Time double Timestamp
Field float[][] X,Y,Z Hall elements for all Hall sensors
Status string {OK, Err-communication, Err-DAQ}
Laser Tracker Position Data
Step string DAQ step id: LinearPositionNo.AngularPositionNo
Time double Timestamp
Location float[][] Coordinates for all tracked probe location points
Status string {OK, Err-communication, Err-DAQ}
Laser Tracker Geometry Data
Step string DAQ step id: LinearPositionNo.AngularPositionNo
Time double Timestamp
Location float[][] Coordinates for all tracked detector points
Status string {OK, Err-communication, Err-DAQ}
Current Data
Step string DAQ step id: LinearPositionNo.AngularPositionNo
Time double Timestamp
Voltage float Shunt voltage
Status string {OK, Err-communication, Err-DAQ}
Motion Data
Step string DAQ step id: LinearPositionNo.AngularPositionNo
Time double Timestamp
Distance float Longitudinal position
Angle float Angular position
Motion string {stationary, moving, unknown}
Status string {OK, Err-communication, Err-DAQ}

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 31 of 34

Table 2. Raw and reduced data clusters
Field Type Description
Raw Data
Step string DAQ step id: LinearPositionNo.AngularPositionNo
Step.Time double Timestamp
Hall.Time double Time of data taking
Hall. Voltages float[][] X,Y,Z Hall elements voltages for all Hall sensors
Hall.Temperature float Hall element temperature
Hall.Status string {OK, Err-communication, Err-DAQ}
NMR.Time double Timestamp
NMR.Field float[][] X,Y,Z Hall elements for all Hall sensors
NMR.Status string {OK, Err-communication, Err-DAQ}
LTS.Time double Timestamp
LTS.Location float[][] Coordinates for all tracked points
LTS.Status string {OK, Err-communication, Err-DAQ}
I.Time double Timestamp
I.Location float[][] Coordinates for all tracked points
I.Status string {OK, Err-communication, Err-DAQ}
Motion.Time double Timestamp
Motion.Distance float Longitudinal position
Motion.Angle float Angular position
Motion.State string {stationary, moving, unknown}
Motion.Status string {OK, Err-communication, Err-DAQ}
Reduced Data
Step string DAQ step id: LinearPositionNo.AngularPositionNo
Step.Time double Time of step completion (timestamp)
Hall. Field float[][] X,Y,Z Hall elements fields for all Hall sensors
NMR.Field float[][] X,Y,Z Hall elements for all Hall sensors
LTS.Location float[][] Coordinates for all tracked points in detector coordinates
I.Current double Current in Amps
Motion.Distance float Longitudinal position
Motion.Angle float Angular position
Status string {OK, Err-communication, Err-DAQ, Err-processing}
QA string {OK, Warning-motion, Warning-field, Warning-misc}

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 32 of 34

Table 3. Miscellaneous data clusters
Field Type Description
Header Data
Time double Run timestamp
Run Id string Run identifier
Configuration string Configuration file
Script string Script file
Parameters string Parameter file
Calibration Id string Calibration set identifier
Comment
Time double Timestamp
Text string Comment
Calibrations
Id string Calibration set identifier
Probe Id string Hall probe identifier
Data float[][] Calibration data

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 33 of 34

APPENDIX B. EXAMPLE SCRIPT FILE

Example: a skeleton of the pointscan script (excerpts)
Iterate over currents and for each current take data at defined posiitons
Currents and positions are defined in a parameter file.
J. Nogiec - 12/10/2013

def script(options):
 try:
 run = emma.generateRunId()
 emma.log("Start " + os.path.basename(sys.argv[0]) + \
 " (" + options.file + ")", 'Info')

 # Read positions and currents from a parameter file
 lines = emma.readFile(options.file)

 # Initialize components
 emma.sendCmd('control.template', 'init.cmd')
 emma.awaitEvent('control.system','init.ack', 'template', 5)
 emma.sendCmd('control.measurement', 'init.cmd')
 emma.awaitEvent('control.system','init.ack', 'measurement', 5)
 emma.sendParCmd('control.all', 'run.start', 'run', run)

 # Iterate over a set of currents
 step = 0 # step counter
 for i in range(len(lines)):
 # retrieve current and corresponding positions from line
 (empty, current, positions) = processLine(lines[i].strip())
 # skip empty lines in parameter file
 if (empty):
 continue
 # set current
 emma.setProperty('property.ps', 'set.cmd', 'target', current)
 emma.sendCmd('control.ps', 'start.cmd')
 # Iterate over a set of positions
 for position in positions:
 # start of step
 step += 1
 emma.sendParCmd('control.all', 'step.start', 'step', step)
 emma.log(" Step " + str(step) + ' ('+ current + '[A]' +\
 ', ' + position + '[m])', 'Info')
 # set position
 emma.setProperty('property.motion', 'set.cmd', 'destination', position)
 emma.sendCmd('control.motion', 'start.cmd')
 # take data
 emma.sendCmd('control.motion', 'read.cmd')
 emma.sendCmd('control.ps', 'read.cmd')
 emma.sendCmd('control.hall', 'read.cmd')
 emma.sendCmd('control.nmr', 'read.cmd')
 # end of step
 emma.sendParCmd('control.all', 'step.end', 'step', step)

Mu2e Project DOCDB Document No.

Mu2e-doc-6697

Page 34 of 34

 # Process exceptions and terminate measurement
 except EmmaException as e:
 command, message = e.args
 emma.error(' EmmaException: ' + message)
 raise e
 except Exception as e:
 emma.error(' Exception: ' + str(e))
 raise e
 finally:
 # set current to 0
 emma.setProperty('property.ps', 'set.cmd', 'target', 0.0)
 emma.sendCmd('control.ps', 'start.cmd')
 # end test
 emma.sendParCmd('control.all', 'run.end', 'run', run)
 emma.log("End " + os.path.basename(sys.argv[0]), 'Info'

	History of Changes
	1. introduction
	1.1 purpose
	1.2 scope

	2. fms functionality
	3. emma framework
	3.1 Architecture
	3.2 EMMA Components
	3.2.1 Controls and data-driven processing
	3.2.2 component dynamic model
	3.2.3 component Properties
	3.2.4 Error reporting

	3.3 Configuration
	3.4 Run-time diagnostics
	3.5 Measurement automation

	4. fms DAQ configuration
	5. fms organization
	6. Measurement automation
	6.1 Algorithm
	6.2 Parameter file

	7. FMS Components
	7.1 Tracker Component
	7.2 Motion component
	7.3 Hall Component
	7.4 NMR Component
	7.5 CURRENT COMPONENT
	7.6 Data COMPONENT
	7.7 Position component
	7.8 Field component
	7.9 Archiver component
	7.10 user INTERFACE component
	7.10.1 Configuration
	7.10.2 measurement
	7.10.3 Motion assessment
	7.10.4 Field visualization and assessment

	8. Software Quality Assurance
	9. Summary
	10. References
	Appendix A. Data CLUSTERS
	Appendix B. Example script file

