
02/02/2016

A quick guide to using LArSoft
Karl Warburton with help from Tingjun Yang

1

Guide to this guide
✤ A lot of the information shown here is taken from;

✤ The dunetpc cheat sheet, which is here.
✤ The LArSoft guide, which is here.
✤ The 35 ton getting start guide, which is here.
✤ The LArSoft concepts webpage, which is here.
✤ An art/LArSoft course in June ‘15, which is here.

✤ Very in-depth talks, I’m skimming over some stuff
which they cover really well here.

✤ LArSoft relies on the art framework which was developed
by the Fermilab scientific computing division for intensity
frontier experiments.
✤ A useful (though HUGE) handbook to help use art can

be found here.
2

Structure of LArSoft
✤ “The LArSoft software (the body of

code) is designed to work for all
planned and running liquid argon
experiments at Fermilab”
✤ Experiment specific code is held

in experiment repositories, such
as specific geometry files and
intricate analysis code.

✤ The code for the general
reconstruction, analysis, data
type declarations, generators and
event displays are held in
‘common’ repositories.

✤ The ‘common ‘ repostries
collectively are called the LArSoft
suite.

The LArSoft suite

✤ All packages can checked out individually or as a whole –
more on this in a moment…

✤ All code within a repository is within a subdirectory of the
same name eg larcore/larcore.

What is in a given respository?

✤ For examples sake we will take larreco – the repo with
the reconstruction in it.

A file used by the build system to
execute certain steps.

A directory for configuration files,
dependency lists, etc

Source code directories under a
single directory, so all the hit

finding and track making is in
here – the code we’re interested in.

A directory for unit and
integration tests organized by

source directory

What is in a given repository?

✤ Separate directories for different aspects of reconstruction.
✤ Hits
✤ Cluster finding
✤ Space point finding
✤ Track finding
✤ Showers

✤ Within these directories is the code for the processes, for
example in HitFinder there are loads of hit finding algorithms.

How to get your hands on repositories

✤ The repositories are all git projects, meaning that you
‘pull’ them using git commands.
✤ From your srcs directory you type:

✤ mrb g larreco
✤ Should you want to use a specific version (that isn’t

the version of develop), then you type:
✤ mrb g –t v05_14_00 larreco

✤ I am skipping quite a few steps here, but will come
back to this later…

Steps to understand LArSoft

✤ Just to get started we need to know some things about:
✤ git – analagous to svn which is used in NOvA
✤ How versions are controlled in LArSoft
✤ How different repositories talk to each other
✤ How to setup your local environment
✤ Producers vs Analyzers vs Algorithms

A rough and ready explanation of git
✤ Git allows multiple people to use and update a common

item(s) in parallel. It can be used for files (eg friends have
spoken highly of it for theses), smallish packages (an event
display in LArSoft was originally in this form), or big
packages eg LArSoft.

✤ It allows versioning control, so if you want to revert to a
previous state of a file it’s easy!

✤ Whenever someone changes something they explain what
they are changing with a ‘commit message’

✤ You can have multiple branches so if you have a base file
which you need to manipulate in two different ways you
could:
✤ Manipulate in way A on branch Karl_A
✤ Manipulate in way B on branch Karl_B

A rough and ready explanation of git 2
✤ When you have a git ‘project’ you have a master branch,

which is where files are stored for production (in LArSoft
we never touch this branch and all work is done on
develop or other branches)

✤ You can list all the branches with:
✤ git branch –a

✤ You can move to a branch which already exists with:
✤ git checkout feature/Karl_OldBranch.

✤ You can make a new branch with:
✤ git flow feature start Karl_NewBranch

✤ To let other people see and use this branch you also need
to do:
✤ git flow feature publish Karl_NewBranch

A rough and ready explanation of git 3

✤ **Do lots and lots of coding** To push all of that fancy
code do:
✤ git add <file path within directory>
✤ git commit –m “I did loads of things!”
✤ git push

✤ Whilst working on your feature branch develop is
likely to change, so you’ll need to merge develop into
your feature branch
✤ git checkout develop
✤ git pull
✤ git checkout feature/Karl_NewBranch
✤ git merge develop

A rough and ready explanation of git 4

✤ Merging your code into develop
✤ git checkout develop
✤ git merge feature/Karl_NewBranch

✤ When the project is finished you have two choices
✤ Delete the feature branch locally

✤ git branch --delete feature/Karl_NewBranch
✤ Delete the feature branch completely

✤ git push origin --delete feature/Karl_NewBranch
✤ Merge your feature branch into develop

✤ git flow feature finish
✤ git push

Resolving easy git conflicts

✤ Someone will invariably change a file you have
changed at some point and a ‘git pull’ or ‘git merge’
will fail.

✤ Luckily though there are tools git has which you can
use to fix this.

Resolving easy git conflicts
✤ If you have

both changed
a file but in
different
places, it is
easy.

✤ You can then
use git stash

✤ Stores your
changes to a
temporary
location.

✤ You can then
pull develop
and do git
stash pop to
merge in your
changes.

Resolving harder git conflicts
✤ Or harder if you both changed the same line, and then

when you do git stash pop you will get an message saying
that you must fix the conflicts.

✤ You fix conflicts by deciding what the relevant should be
in regions indicated by “<<<<<<“ and “>>>>>”

✤ Once you have done this you then do
✤ git commit –a
✤ git push

What is mrb?
✤ Multiple-repository build system, simplifies the building of multiple

products pulled from different repositories
✤ setup mrb
✤ mrb newDev –h ## Will list lots of info about newDev command

LArSoft versioning

✤ When you setup a version of LArSoft you do the following:
✤ setup larsoft v06_01_00 –q e10:prof

✤ The version (06_01_00) has 3 parts;
✤ 1st number is major version, increments slowly and only when there

are big breaking changes eg moving to art v2 and ROOT6 (July
2016)

✤ 2nd number is minor version, increments when new feautres such as
data product members are added

✤ 3rd number is patch number, this increments roughly
✤ The qualifier (e10:prof) has two parts

✤ 1st number is the qualifier, it increments for newer versions of gcc
✤ Seems to be cause for a major version?, for example v05 had e9.

✤ 2nd number is the compiler, and there are two options
✤ Prof – profiled, runs faster but less useful debugging
✤ Debug – runs slower, but easier to debug.

How repositories talk to each other
✤ In a local checkout of a repository you have a file called ups/product_deps

in here it will have a line which says which version of the given repository it
calls itself.

✤ It will also say which version of both LArSoft and some key repositories it
depends on.

✤ If you do not have these other repositories checked out then your code will
depend on the code which was in develop when that version of the
repository was made.
✤ This means that to have the most up-to-date code you have to all the

repositories checked out and continuously do git pull.
✤ Obviously a bit daft to do (compiling would take ages and you’d just

be pulling code all the time), hence a new release ~every week.
✤ If you have repositories checked out then you will use the code which is in

your srcs directory not that which is in develop.

How to setup your local environment
✤ We now have a good enough idea about how stuff works

to get our hands on some code!
✤ One question to consider though. Do you want to work on

computers in Minnesota or at FNAL?
✤ Both will work exactly the same way but you have to do

the initial setup each time you log differently.
✤ If FNAL

✤ If Minnesota (well Sheffield)
✤ This requires someone to have installed CVFMS onto a

server locally somewhere.

How to setup your local environment 2

✤ Now we want to setup larsoft and get our repos.
✤ Check what is the latest version of larsoft

✤ ups list –aK+ larsoft
✤ This works for all repos. & art products eg GEANT4

✤ Setup larsoft of the desired version
✤ setup larsoft v06_01_00 –q e10:prof

✤ Make a new directory for LArSoft
✤ If using FNAL machines, DO NOT use your home area (AFS).
✤ DO use your /dune/app/users/USER/ area.
✤ Be careful about making any soft links between AFS and

/dune/app/users/USER. It can make grid submission
awkward

✤ mkdir larDev
✤ cd larDev

How to setup your local environment 3

✤ You now want make a new development area.
✤ mrb newDev
✤ This only works in an empty directory

✤ You will get an output saying you need to source
something now and whenever you logon.
✤ source localProducts_XXXX/setup

✤ You now want to get your repositories
✤ cd srcs (cd $MRB_SOURCEDIR)
✤ mrb g dunetpc
✤ mrb g < any other repository your heart desires >

How to setup your local environment 4

✤ You now want to build your code.
✤ cd ../build (cd $MRB_BUILDDIR)
✤ mrbsetenv
✤ mrb i –j8

✤ When you have made changes to your code and need to recompile:
✤ cd $MRB_BUILDDIR
✤ make install –j 8

✤ You then want to make sure that you are using your local products
✤ mrbslp

✤ In the above commands the –j X tells the compiler how many cores to
use.

✤ The mrb i –j 8 command can be split into two commands if you want to
do the building and installing separately.
✤ mrb build –j 8
✤ make install

How to setup your local environment 5
✤ Some pointers about building.

✤ DUNE has a buildmachine (dunebuild01), it has 16 cores so
is much faster for building.

✤ Whenever you check out a new repo or add a new file you
have to do
✤ cd $MRB_BUILDDIR
✤ mrbsetenv
✤ mrb i –j 16

✤ There is a compiler called ninja which at least feels faster
✤ cd $MRB_BUILDDIR; mrb z; mrbsetenv
✤ setup ninja v1_6_0
✤ mrb i –j 16 –generator ninja

✤ When using ninja the make install –j8 command on the
previous slide changes to
✤ ninja install –j 8

What to do when you log back in
✤ Luckily you don’t have to do this every time you login,

you only have to do a small subset of the commands.
✤ Left – my script for FNAL
✤ Right – my script for Sheffield

New LArSoft releases
✤ There is a new release ~ every week, so you making a new

directory for each release would be pain! This means we will
have to update our code to rely on the newest release when one
comes out.

✤ First thing, log out and then log back in again!
✤ Setup LArSoft as we did previously

✤ source /grid/fermiapp/products/dune/setup_dune.sh
✤ setup larsoft v06_01_01 –q e10:prof
✤ cd larDev

✤ We now want to make a new development within our current
directory
✤ mrb newDev –p
✤ The –p option tells mrb to make a new localProducts using an

existing src directory.
✤ Source the new localProducts

✤ source localProducts_XXXX/setup

New LArSoft releases
✤ Now we want to update our repositories

✤ cd $MRB_SOURCEDIR/dunetpc
✤ git checkout develop
✤ git pull

✤ If working on a feature branch, want to do two more
commands
✤ git checkout feature/Karl_NewBranch
✤ git merge develop
✤ git push

✤ Update other repositories such as larreco, larsim etc.
✤ Now, go to build directory and do a clean build.

✤ mrb z; mrbsetenv; mrb i –j16 --generator ninja

Multiple builds
✤ It is possible to have multiple build areas (a debug and a

prof) which depend on the same srcs directory.
✤ Debug for testing, prof for running jobs.

✤ Clean login!
✤ Setup environment and desired LArSoft

✤ cd larDev
✤ mrb newDev –v v06_01_00 –q debug:e10 –T debug –f

✤ -T specifies name of new directory
✤ -f specifies that you want to use existing srcs

✤ This makes new directory debug with a localProducts and
build directory in it

✤ Source the new localProducts and build!
✤ Now, when you logon you have the choice of using either

prof or debug, and they both use the same srcs directory.

Producers, Analyzers and Algs
✤ Producers and analyzers define modules which are

ran at your desire when you run LArSoft
✤ Algorithms however just hold code, and are accessed

by producers and analyzers.
✤ Obviously advantageous to put quite general code

in algs so that multiple modules can use the same
code e.g. calorimetry calculations are in algs.

✤ A producer produces something, thus changing the
event record eg hit reconstruction

✤ An analyzer just analyzes the data.
✤ There are also source modules but these are rarely

used, and filters which are very useful though I have
little experience using them.

Adding a new module
✤ At some point you will want to make a new module for your

work.
✤ First step is to decide if it is a producer / analyzer i.e. does it add

anything to the data record?
✤ Second step is decide which repo and subdirectory to put it in.
✤ You can make a brand new empty module

✤ OR, you can just copy an existing module, renaming it and
changing the name of the class etc. (much easier).

✤ You then need to make sure it will get built, this is done by
looking in the CMakeLists.txt file in that directory.
✤ Hopefully this is no effort, as it should art_make which tells

the compiler to build everything in the directory, but some
directories don’t do this yet…Then you need to either change
it, or add it to the list.

✤ Now do a clean build and your module is ready for you to run.

Adding a new directory
✤ If you want to put your module in a new directory.
✤ Make your new directory.
✤ Add an extra add_subdirectory(DirName) line to the

CMakeLists.txt in the repo.
✤ Example in larreco/larreco

✤ Make your new module, and copy a CMakeLists.txt
into your new directory.

✤ Do a clean build and you’re ready to go.

What we’ve covered

✤ A quick overview of:
✤ Git
✤ LArSoft versioning and how to use mrb to get

repositories
✤ Setting up your local environment
✤ Using multiple build areas
✤ Adding new modules and directories

