
A	getting	started	example	to	LArSoft	and	dunetpc	
We	want	to	do	the	stuff	I	outlined	in	the	first	talk.	

1. Logon	to	dunebuild01.fnal.gov	
a. kinit php13tkw@FNAL.GOV
b. ssh php13tkw@dunebuild01.fnal.gov	

2. Setup	the	local	environment	
a. source /grid/fermiapp/products/dune/setup_dune.sh	

3. Make	sure	you	are	in	the	/dune/app/	area	
a. cd /dune/app/users/USER	

4. Setup	LASoft	–	we	are	going	to	set	up	an	old	build	so	we	can	do	an	extra	step.	
a. ups list –aK+ larsoft #### List all LArSoft releases	
b. setup larsoft v06_01_00 –q e10:prof	

5. Make	a	new	directory	for	your	LArSoft	build.	
a. mkdir larDev	
b. cd larDev	

6. Make	a	new	development	
a. mrb newDev	

7. Source	the	new	LocalProducts	
a. source localProducts_*/setup	

8. Go	to	the	srcs	directory	and	checkout	dunetpc	
a. cd $MRB_SOURCE	
b. mrb g –t v06_01_00 dunetpc	

9. Go	to	the	build	directory	and	build	
a. cd $MRB_BUILDDIR	
b. mrbsetenv	
c. setup ninja v1_6_0	
d. mrb i –j16 --generator ninja	

10. Set	our	local	products	to	make	sure	we	use	them.	
a. mrbslp	

	
However,	v06_01_00	of	dunetpc	is	an	old	release	(it	was	the	last	release	in	July	‘16),	so	if	
we	want	to	use	the	newest	version	of	the	code	we	need	to	update	to	v06_XX_XX!	

1. Logout	of	dunebuild01	and	relogin	:D	
a. ssh php13tkw@dunebuild01.fnal.gov	

2. Setup	the	local	environment	
a. source /grid/fermiapp/products/dune/setup_dune.sh	

3. Make	sure	you	are	in	the	/dune/app/	area	
a. cd /dune/app/users/USER	

4. Setup	LASoft	–	we	are	going	to	set	up	an	old	build	so	we	can	do	an	extra	step.	
a. setup larsoft v06_XX_XX –q e10:prof	

5. Change	to	the	LArSoft	directory.	
a. cd larDev	

6. Make	a	new	development	using	the	old	srcs	directory	
a. mrb newDev –p	
b. source localProducts_<NEW VERSION>	

7. Move	to	dunetpc	and	pull	develop	
a. cd srcs/dunetpc

b. git checkout develop	
c. git pull	

8. If	you	are	working	on	a	feature	branch,	you	want	to	merge	the	new	develop	to	your	
feature	branch	

a. git checkout feature/php13tkw_Test	
b. git merge develop	

9. Do	the	same	for	all	of	your	other	repositories	
10. Go	to	the	build	directory	and	build	

a. Cd $MRB_BUILDDIR	
b. mrb z	
c. mrbsetenv	
d. setup ninja v1_6_0	
e. mrb i –j16 --generator ninja	

11. Set	our	local	products	to	make	sure	we	use	them.	
a. mrbslp	

	
We	now	have	the	most	up-to-date	version	of	dunetpc	in	our	local	area,	so	now	we	want	to	
do	some	work!	
We	don’t	want	to	use	the	build	node	for	anything	other	than	building,	so	we	want	to	change	
node	to	one	of	the	gpvms.	Setting	everything	up	upon	a	fresh	login	

1. Logout	of	dunebuild01	and	relogin	to	dunegpvm(01-10).fnal.gov	
a. ssh php13tkw@dunegpvm05.fnal.gov	

2. Get	your	local	area	ready	–	you	may	want	to	make	a	shell	script	to	do	this.	Note	C,D	
are	for	submitting	jobs	to	the	cluster.	

a. source /grid/fermiapp/products/dune/setup_dune.sh	
b. setup ninja v1_6_0	
c. . /grid/fermiapp/products/common/etc/setups.sh	
d. setup jobsub_client	
e. source /dune/app/users/USER/larDev/localProd*/setup	
f. cd $MRB_BUILDDIR	
g. mrbsetenv	
h. mrbslp	
i. mrbslp	
j. cd $MRB_TOP	

	
It	is	probably	a	good	idea	to	have	a	look	through	some	of	the	mrb	commands	which	we	have	
just	used	to	understand	them	and	the	different	options	we	can	use	with	the	commands.	

• mrb newDev –h ## When we made a new development area
• mrb g –h ## When we got a new repository
• mrb b –h ## To just build, not install
• mrb I –h ## To build and install
• mrb z –h ## To delete everything in build area
• mrbsetenv –h ## To setup a development area
• mrbslp –h ## To setup products in localProducts area
• mrb uv –h ## Update a product version
• mrb uc –h ## Update the master CMake – when you

checkout a new repository	

It	is	a	good	idea	to	do	work	on	a	feature	branch,	so	that	any	code	you	develop	can	be	shared	
with	people	easily	(pushing	everything	to	develop	isn’t	necessary	/	is	undesirable).	
For	now,	we	will	only	do	steps	1	–	4.	

1. Make	sure	that	everything	is	setup,	local	products	etc.	
2. Change	desired	repository	eg	dunetpc	

a. cd $MRB_SOURCE/dunetpc	
3. Make	sure	you	have	the	latest	develop	

a. git checkout develop	
b. git pull	

4. Make	a	new	feature	branch,	command	has	form		
a. git flow feature start USER_SPECIFIER
b. git flow feature start php13tkw_Test

5. <<<<	Do	some	coding	>>>>>	
6. Check	what	code	you	have	been	changing	

a. git status		##	Gives	a	list	of	the	modules	you	have	changed	/	added	
b. git diff ##	Gives	a	line	by	line	description	of	what	you’ve	changed

7. <<<<	Do	some	coding	>>>>>	
8. Push	to	your	own	feature	branch	if	you	aren’t	ready	to	publish	it	yet.	

a. This	means	that	you	can	store	your	work	for	later,	but	only	you	can	access	
what	is	on	there.	

b. git add my_file.cc	
c. git commit –m “I’ve done this, that and the other”	

9. <<<<	Do	some	coding	>>>>>	
10. Publish	your	feature	branch	

a. git flow feature publish php13tkw_Test	
11. <<<<<	Do	some	more	coding	>>>>>>	
12. Project	is	finished,	so	now	either	delete	feature	branch	or	merge	it	into	develop	

a. Delete	feature	branch,	i	deletes	locally,	ii	deletes	in	origin.	
i. git branch –d feature/php13tkw_Test

ii. git branch –dr origin/feature/php13tkw_Test
b. Merge	it	into	develop	

i. git flow feature finish php13tkw_Test	
		
	 	

Let’s	add	a	new	directory	and	module	to	dunetpc!	
1. Move	to	where	all	the	code	in	dunetpc	resides	and	make	a	new	directory	HitDumper	

a. cd $MRB_SOURCE/dunetpc/dune/	
b. mkdir HitDumper	

2. Open	CMakeLists.txt	and	add	the	relevant	line	to	it	
a. emacs CMakeLists.txt	

b. 	
3. Copy	the	HitDumper	module,	fcl	files	and	CMLists.txt	from	my	local	area.	

a. cp /dune/app/users/php13tkw/HitDumper/* HitDumper/
4. Check	that	it	uses	art_make	–	so	our	module	will	be	built,	if	not	add	it	to	the	list	of	

modules	that	will	be	built.	
a. emacs HitDumper/CMakeLists.txt	

5. Look	around	the	module	and	the	fcl	files	to	satisfy	yourself	as	to	how	they	work.	
Notice	how	the	fcl	parameters	are	changed	in	RunHitDump_35ton.fcl	and	how	fcl	
parameters	are	accessed	in	the	module.	

6. Go	to	the	build	directory	and	do	a	clean	build	
a. cd $MRB_BUILDDIR	
b. mrb z	
c. mrbsetenv	
d. mrb i –j16 –generator ninja	

	
If	you	do	this	on	the	build	machine,	then	you	need	to	do	the	following:	

• ssh php13tkw@dunebuild01.fnal.gov	
• source /grid/fermiapp/products/dune/setup_dune.sh	
• cd /dune/app/users/USER	
• source localProducts_*/setup	
• cd $MRB_BUILDDIR	
• mrbsetenv	
• setup ninja v1_6_0	
• mrb i –j16 --generator ninja	

	
Obviously	you	don’t	need	to	add	a	new	directory	every	time	you	make	a	new	module.		

• If	the	subdirectory	you	want	to	put	your	module	has	a	CMakeLists.txt	with	art_make	
then	you	just	need	to	add	the	module	and	do	a	clean	build.	

• If	it	doesn’t	you	will	either	have	to	change	it	to	use	art_make	or	add	it	to	the	list	of	
modules	described	in	it,	see	dunetpc/dune/TrackingAna/CMakeLists.txt	 	

Now	that	we	have	a	new	analysis	module	on	our	feature	branch	and	have	everything	setup	
let’s	simulate	some	things.	Most	work	will	no	longer	be	done	with	the	35	ton,	but	it’s	small	
geometry	means	that	things	will	run	faster,	which	is	all	we	care	about	at	the	moment.	
Note	that	you	need	to	specify	the	file	you	want	to	run	over	correctly	for	steps	4,5,6	and	7.	

1. Go	to	the	top	of	LArSoft	development	area	and	a	directory	for	our	work	
a. cd $MRB_TOP	
b. mkdir workspace	
c. cd workspace	

2. Generate	10	CRY	events.	
a. lar –c prodcosmics_dune35t_onewindow.fcl –n 10	

3. As	FHiCL	is	configurable	we	can	change	things	in	the	simulation	with	fcl	parameters.	
CRY	lets	you	simulate	only	muons	or	longer	time	spans	for	example	

a. I	have	a	script	in	my	.bashrc	which	locates	fcl	files	
b. Copy	the	fcl	file	here	

i. cp
$MRB_SOURCE/dunetpc/fcl/dune35t/gen/single/prod
cosmics_dune35t_onewindow.fcl	

c. List	the	fcl	parameters	to	see	what	you	want	to	change.	Note	that	the	
parameters	to	change	which	particles	are	generated	are	given	default	values	
in	the	module	ie	they	are	not	listed	by	ART_DEBUG_CONFIG.	

i. ART_DEBUG_CONFIG=1 lar –c prodcosmics_
dune35t_onewindow.fcl	

d. Open	the	fcl	file	and	change	whatever	you	like	
4. Run	GEANT4	on	the	output	

a. lar –c standard_g4_dune35t.fcl prodcosmics...	
5. Run	the	detector	simulation	on	the	output	

a. lar –c standard_detsim_dune35t.fcl prodcosmics...	
6. Run	the	reconstruction	on	the	output	

a. lar –c standard_reco_dune35t.fcl prodcosmics...	
7. Run	the	analysis	module	we	just	put	in	dunetpc	on	the	output	

a. lar –c RunHitDump_35ton.fcl prodcosmics...	
	
	 	

Now	we	have	a	fully	reconstructed	sample	and	our	output	we	can	do	two	things,	look	at	it	
on	the	event	display	and	look	what	our	analysis	module	did.		
We	will	do	the	event	display	first.	
Note	that	the	event	display	won’t	be	the	fastest,	but	there	is	a	trick	we	can	do.	

I	don’t	know	how	much	you	guys	know	about	running	GUIs	on	the	gpvms….	
	

STEP 1: Start a VNC server on the gpvm
Log into the gpvm of your choice.
Start the VNC server. The command is:
• vncserver :X
where X is a number of your choice. In my case, I chose 8, so my command was:
• vncserver :8
The number specifies the display you are going to use. I don’t think this will work if someone
is already using that display so, in that case, it may demand you use a different one.
If this is the first time setting up a server, it will ask you to pick a password. Pick one.

STEP 2: Push the output of a remote terminal to the VNC desktop
In a terminal where you are connected to the gpvm and are doing work which requires a
GUI, issue the following command:
• export DISPLAY=localhost:X
Where X is the number you chose. In my case the command was:
• export DISPLAY=localhost:8

STEP 3: Tunnel the VNC through ssh to keep it all encrypted
On your local machine, via a terminal, issue the following command:
• ssh -L 59X:localhost:59X -N -f -l USERNAME GPVMADDRESS
Something to be aware of here. The port forwarding for VNC is via ports 59[0..99] and for
numbers less than 10 you have to include the leading 0. So my command was
• ssh -L 5908:localhost:5908 -N -f -l dbrailsf dunegpvm06.fnal.gov
The -L 5908:localhost:5908 says forward information from the local side on port 5908 to the
remote host via its port 5908. You have to make sure that the port number (in my case 08)
matches with the display used when setting in the vncserver.

STEP 4: Open the VNC window locally
Tell whatever local vncviewer you have installed to open the localhost window using the port
(localhost:59X or localhost:5908 in my case). For mac users, there is already one installed
which you can access very easily via open. The mac command is
• open vnc://localhost:59X
In my case, the command was:
• open vnc://localhost:5908
A desktop window should pop up. In any remote terminal window in which you have pushed
the output to the VNC window (like step 2), the GUIs should open in this desktop.

STEP 5: Open a GUI remotely and watch it appear in the desktop window
Go back to the terminal in step 2 and open a GUI. A quick test would be a TBrowser
• root -l
• new TBrowser
Confirm that the TBrowser opens in the VNC desktop window. Try doing stuff with it and
note how quick it is.

I also believe that you can push multiple terminal displays to a single VNC server so you
could repeat step 2 for a bunch of different terminal windows.

The	default	LArSoft	event	display	is	very	powerful	but	also	very	confusing	at	first.	It	is	ran	
with	the	command:	

• lar –c evd_dune35t.fcl prodcosmics*_reco.root	
This	will	generate	a	new	window	which	looks	something	like	this,	some	of	the	key	features	
have	been	labelled:		
	
	

	
	
	
	

	

Event	number	

Which	wire	you	
are	looking	at	

Collection	

Induction	-	U	

Induction	-	V	

Raw	signal	
Reco	hit	

Time	(ticks)	

Wire	number	

TPC	scroll	

Noise	hits	

Track	hits	

Colour	scale	
showing	deposited	
charge	

Time	vs	ADC	plot	for	
a	given	wire	

Event	scroll	

Which	view	you	
are	looking	at	

Truth	track	in	XZ	
plane	

Truth	track	in	YZ	
plane	

Size	of	markers	

Grey	lines	
indicate	TPC	
boundaries	

Drawing	options	have	
Raw	
Reco	
Color	
Simulation	

Drawing	tracks	
from	pmtrack	

Not	drawing	
reco	tracks	

A	quick	aside	about	the	35	ton	detector	for	those	who	don’t	know.	
• It	has	4	APAs,	and	two	drift	directions	giving	8	TPCs	(numbered	0-7)	in	total	
• It	had	cosmic	ray	scintillator	paddles	around	the	outside	
• It	had	photon	8	SiPMs	inside	the	4	APAs	to	collect	flashes.	
• It	had	2	induction	planes,	and	one	collection	plane	on	each	TPC.	
• The	wires	were	wrapped,	meaning	that	the	induction	wires	were	in	multiple	TPCs	eg	

0	and	1.		
I	can	draw	some	diagrams	/	explain	it	all	properly	to	anyone	that	wishes	me	to	do	so.	
	

1. Scroll	through	the	TPCs	for	event	1	to	see	what	raw	signals	we	generated.	
2. Click	on	the	reconstruction	tab	and	do	the	same	to	see	the	reconstructed	tracks,	see	

how	well	they	line	up.	
3. Open	the	Ortho3D	Viewer.	
4. Open	the	Simulation	tab	option	-	.	

a. Set	ShowMCTruthTrajectories	to	true.	
b. Click	Apply.	The	two	windows	should	refresh	and	look	different,	if	they	don’t	

click	update	(or	do	it	anyway	just	to	make	sure).	
c. Hopefully	you	will	notice	that	some	blue	lines	have	appeared	on	the	Orth3D	

tab	–	these	are	the	trajectories	which	our	particles	took	through	the	detector	
5. Change	from	the	Simulation	to	the	Reconstruction	tab.	

a. Set	the	following	parameters	–	note	you	need	to	press	enter	after	you	
change	each	field,	the	number	/	string	will	turn	from	grey	to	black.	

i. DrawTracks	–	2									(shows	the	track	number)	
ii. TrackModuleLabels	(change	from	cheated	to	non-cheated	reco)	
iii. HitModuleLabels					(change	from	cheated	to	non-cheated	reco)	
iv. 	

b. Click	Apply.	The	two	windows	should	refresh	and	look	different,	if	they	don’t	
click	update	(or	do	it	anyway	just	to	make	sure).	

c. If	you	want	you	can	also	show	the	OpFlash	information	on	the	event	display	
by	setting	the	following	parameters:	

i. DrawOpFashes	-	1	
6. Scroll	through	the	events	doing	the	following:	

a. Switch	between	the	raw,	reconstructed	and	both	views	
b. Switch	between	showing	cheated	and	non-cheated	hits	
c. Look	at	how	the	truth	tracks	(in	Ortho3D)	relate	to	tracks	in	the	event	

display	window	by	scrolling	through	TPCs.	
	 	

Using	the	cluster	and	project	python	
Use	of	the	cluster	is	identical	to	as	you	do	in	NOvA,	but	you	submit	using	your	dune	
crediantials	not	NOvA	ones!		
I	think	this	just	means	having	a	different	KCA	certificate	and	using	the	--group	dune	option.	
	
I	don’t	think	that	you	have	project	python	in	NOvA	though.	This	is	a	really	handy	tool	
developed	by	Herb	Greenlee	which	takes	a	lot	of	the	hassle	out	of	job	submission	for	you.	

• Project	python	uses	XML	files	to	do	all	of	the	behind	the	scenes	preparation	for	you	
jobs.	

• It	takes	multiple	‘stages’,	each	represented	by	a	fcl	file	and	submits	jobs,	checks	
whether	they	are	running,	and	then	checks	that	the	files	produced	are	‘good.’	

• Allows	you	to	give	it	a	list	of	files	which	you	want	it	to	load	in.	
• Runs	jobs	using	either	the	head	of	develop,	or	your	local	products	(if	you	do	this	you	

will	want	to	make	them	into	a	tarball)	
• Explained	fairly	thoroughly	here	on	the	dunetpc	wiki.	

Let’s	do	a	set	of	500	anti-muons	in	the	35	ton	detector	to	test	it	out.	
1. Make	a	tarball	of	your	local	products.	

a. mkdir $MRB_TOP/tarballs	
b. cd $MRB_TOP/tarballs	
c. make_tarball.sh v06_01_00.tar	

2. Make	a	directory	where	you	want	to	have	all	the	XML	files	(there	are	~110	atm)	
a. mkdir $MRB_TOP/XML	
b. cd $MRB_TOP/XML	

3. Get	the	xml	files,	using	your	local	products	and	username	
a. make_xml_mcc.sh –u USER --local

/dune/app/users/USER/larDev/tarball/v06_01_00.tar –r
v06_01_00 	

4. Using	the	wiki	page	do	the	following	to	AntiMuonCutEvents_LSU_dune35t.xml	
a. Change	the	number	of	events	from	10,000	to	500	
b. Change	the	number	of	jobs	from	100	to	5	
c. Add	a	new	stage	after	mergeana	which	uses	the	fcl	file	for	your	analysis	

module	and	uses	the	output	from	the	reco	stage	as	its	input.	
	
There	are	two	ways	to	submit	jobs	using	project	python,	for	completeness’	sake	we	will	do	
both.	

• Open	up	a	gui	and	submit	via	there.	
o Covered	substantially	on	the	wiki.	
o Projectgui.py AntiMuonCutEvents_LSU_dune35t.xml
o <<	GUI	opens	up	>>	
o Click	“Gen”	on	the	LHS	–	the	row	will	change	colour	
o Click	“submit”	–	the	idle	column	will	increase	from	0	to	5	
o <<	Watch	as	jobs	move	from	idle	to	running	>>	
o When	all	5	jobs	have	completed,	click	“Check”	
o <<	Hopefully,	the	Events	column	will	show	500	and	GoodFiles	will	show	5	>>	

• Submit	the	jobs	via	the	command	line.	
o I	assume	you	have	done	the	above	for	the	Gen	stage,	so	we	will	submit	g4.	

o project.py --xml AntiMuonCutEvents_LSU_dune35t.xml -
-stage gen --check

o <<	Should	get	an	output	which	says	5	good	files	>>	
o project.py --xml AntiMuonCutEvents_LSU_dune35t.xml -

-stage g4 --submit
o <<	Have	now	submitted	the	g4	stage	jobs	>>	
o project.py --xml AntiMuonCutEvents_LSU_dune35t.xml -

-stage g4 --update
o <<	Should	show	that	X	jobs	are	idle,	Y	jobs	are	running	>>	
o project.py --xml AntiMuonCutEvents_LSU_dune35t.xml -

-stage g4 --check
o <<	If	all	the	jobs	have	finished	running,	then	hopefully	we	will	have	5	good	

files	>>		
o For	more	options	as	to	how	to	use	the	command	line	use:	

§ project.py --help	
• Go	all	the	way	through	all	the	other	stages	as	you	see	fit,	making	sure	that	all	of	the	

processes	in	the	previous	stage	have	finished	before	submitting	the	next	stage.	
	
There	is	one	additional	step	which	we	can	do	for	the	analysis	stages	–	merging	the	output	
TFS	histogram	files.	

• On	the	command	line	
o project.py --xml AntiMuonCutEvents_LSU_dune35t.xml -

-stage analysis --mergentuple
• Using	the	GUI.	

	
There	is	an	example	of	how	I	submit	jobs	to	the	cluster	when	not	using	project	python	here:	

• /dune/app/users/php13tkw/LarDevelop/workspace/Splitter/GoodRun
List/SubmitGoodRunJobs/	

• source TheSubmissionScript.sh	
There	is	an	example	of	using	the	PROCESS	variable	here:	

• emacs -nw /dune/app/users/jti3/mytest/job/runjob.sh	
• jobsub_submit -N 4342 -q --OS=SL6 --group=dune --resource-

provides=usage_model=OPPORTUNISTIC
file:///dune/app/users/jti3/mytest/job/runjob.sh	

	
	
	 	

Now	to	look	at	what	the	analysis	module	did.	
The	module	simply	makes	a	TTree	with	the	reconstructed	hit	information.	We	can	look	at	
this	information	using	simple	TTree	draw	commands	or	using	a	TBrowser.	
	
We	can	build	on	this	example	module	to	make	it	do	the	following:	

• Also	write	out	some	tracking	information	
o We	can	further	write	out	which	hits	are	associated	to	what	track	
o We	can	see	what	particle	caused	the	tracks.	
o There	are	art	associations	in	the	event	which	you	can	use	to	get	this.	

• Also	write	out	some	of	the	cosmic	ray	counter	information	(ExternalTrigger)	
• Also	write	out	some	of	the	reconstructed	photon	detector	information	(OpFlash)	
• We	can	try	to	associate	flashes	and	external	triggers	with	tracks.	
• Want	to	add	histograms	to	the	TTree	
• Want	to	use	some	random	function	defined	in	another	class.	

o Have	a	think	about	something	that	could	possibly	make	sense,	if	not	just	use	
the	Counter	map	function	in	daqinput35t/PennToOffline.cc.	

	
Things	we	need	to	try	to	do:	

• Associations,	both	creating	new	ones	and	accessing	existing	ones	
o Need	to	make	a	producer	to	do	this.	
o Have	a	look	at	MCTruth_module.	

• Accessing	lots	of	different	data	members	–	use	DOxygen	
o Try	to	follow	through	how	calorimetry	works,	just	to	get	used	to	the	

formatting	of	the	LArSoft	DOXygen.	
	
For	some	pre-defined	examples	of	code	we	can	look	in	larexamples.	

