		Radiation Monitoring Interface v4.0 Code Review
Radiation Monitoring Interface v4.0 Code Review
[bookmark: _GoBack]July 5, 2016
Background
The purpose of this review is to assess the coding used for the Radiation Monitoring Interface v4.0 Project. The v4.0 project consists of using the current Radiation Monitoring Interface v3.0 hardware with an updated daughterboard, known as rad13. The rad13 daughterboard will replace the obsolete, non-reprogrammable microcontroller chip from v3.0. The system used for the v4.0 project will interface between the Accelerator Division Environment, Safety & Health (AD/ESH) Safety System and approved Fermilab radiological instruments (i.e., Chipmunk, Scarecrow, FOX and TLM).
Review Team
Richard Neswold – AD, Engineering, Accelerator Controls
Adam Olson – ESH&Q, Radiation Physics Engineering Team, Interlocks & Instrumentation
Gary Ross – ESH&Q, Radiation Physics Engineering Team, Interlocks
Madelyn Wolter – ESH&Q, Radiation Physics Engineering Team, Radiation Safety Officers
Documents Reviewed
User Documentation
1) Radiation Monitor Interface v4.0 Project Overview
Technical Documentation
2) Radiation Monitor Interface v3.0 Schematic
3) Radiation Monitor Interface v4.0 Daughterboard Schematic
4) NXP LPC1114 Micro-controller Data Sheet
5) NXP LPC1114 Micro-controller User Manual
6) Micro-controller Pin Assignments
Reference Documentation
7) Radiation Monitor Interface v4.0 Software Requirements
8) Radiation Monitor Interface v4.0 Test Cases
9) RadCalcs for v4.0
10) Radiation Monitor Interface v4.0 Test Case 5-4-2016 Gross
11) Radiation Monitor Interface v4.0 Project Documentation Sheet
Technical Review
12) Radiation Monitor Interface v4.0 Project Kickoff PP
13) Flow Chart Roadmap Power Point
Issues/Comments/Recommendations
Software Test Cases
Test cases were used prior to the review to test the functionality of the code. Any issues found with the test cases were fixed before the start of this review, and were noted in the test case documentation.
Redmine Issues
Redmine was used during this review for scheduling review meetings, testing functions within Redmine, storing documents related to the review, reviewing the source code, and tracking issues to completion. Throughout the course of the review, fifteen (15) issues were tracked through Redmine, nine (9) of which are related to review meetings and Redmine functions. The remaining six (6) issues relate to the Rad13 code and are detailed below. These issues relate to best coding practices and stylistic suggestions, no major issues were found.
Issue #12836	Minimize Temporaries
This is a style suggestion instead of an actual problem. This comment can be closed after reading since the code is correct, as written. Adding the temporary (retVal) generates extra code and, if the function gets larger than this one, can obfuscate what is going on. For instance, I’d write this function as:
uni32_t i2cStart(void)
	{
		uint32_t timeout = 0;
		LPC_I2C->CONSET = I2CCONSET_STA;
		do {
			if (I2CMasterState == I2C_STARTED)
				Return TRUE;
		} while (++timeout < MAX_TIMEOUT);
		return FALSE;
	}

I know some people like returning from functions at only one point, so my approach is unappealing to them. But, to meet that requirement means you complicate your algorithm by adding temporaries. Also, if you have a nested loop, the break won’t help you since it only breaks out of the inner-most loop. You’ll resort to using a goto, which is generally frowned upon.
Category: Stylistic changes
Response: I would be one of those that doesn’t care for multiple returns in a function but I see Rich’s point. This processor has tons of memory so I didn’t really code specifically to reduce memory usage. It certainly wouldn’t be difficult to change if anyone sees the need.
Status: Closed
Issue #12837	_inline Won’t Work Here
The _inline keyword doesn’t accomplish anything here. If this function (and the following) were included in their entirety in the header file, the compiler could inline them because it would have their body to expand wherever these function are called.
Category: Best coding practices – language feature
Response: Resolved by removing from the codebase.
Status: Closed
Issue #12839	volatile Keyword Isn’t Necessary Here
The volatile keyword tells the compiler that a variable is shared (either between threads or between interrupt and non-interrupt code). The compiler will re-read the value from memory every time it needs to use it. The variables in main are on the stack and only visible to main, so they can’t be shared with an interrupt routine. All the volatile keyword is doing here is making the compiler re-read it from memory with every use.
Category: Best coding practices – language feature
Response: Rich is correct and I will change this and remove the volatile keyword. There are many instances of this in main().
Status: Closed
Issue #12840	Is Temporary Necessary?
Is the temporary really necessary? I had to visually check to see whether what regVal is being loaded from was the same that it was assigning to. If the generated code is correct1, I think this is a little more obvious:
void reset_timer16(uint8_t timer_nun)
{
	if (timer_nun == 0)
		LPC_TMR16B0->TCR |= 0x02;
	else
		LPC_TMR16B10>TCR |= 0x02;
}
and I think it could be reduced to:
void reset_timer16(uint8_t timer_num)
{
	(!timer_num ? LPC_TMR16B0 : LPC_TMR16B1)->TCR |= 0x02;
}
but that’s getting a little too cutesy.
1 Hardware usually has access restrictions. For instance, a 16-bit register might require a 16-bit access instead of two 8-bit reads. If the TCR register is 16-bits, the compiler may notice that OR-ing 0x02 only modifies the bottom byte and simply write it. If TCR is 8-bits, then the code should be fine.
Category: Stylistic changes
Response: On this one I will stick with what’s there code-wise. I will however add a comment because your concern about the register size is valid. It is a 32-bit register with only bits 0:3 used. I could flesh it out with a 32-bit constant, 0x00000002, but that is kind of misleading also in that the bits 4:31 are reserved. Same goes for some of the other registers in this fila and some of the other driver files. Your thoughts? I usually hit those bits used but unless one knows the user manual and the fact that they are 32-bit system registers…
Response from issue submitter: none Even if you specified the constant as 0x00000002, the compiler could, theoretically, realize it only has to update the lowest bit. With your code, regVal will get transferred in its entirety. So it’s probably better to leave it as is (since the target is hardware).
Status: Closed
Issue #12843	Factor Out Common Code
In this function and several following functions, there is duplicated code used in each case of a switch statement. I’d recommend creating a function that returns the correct GPIO pointer. The functions then collapse into one copy of the code. For instance, with this function:
static LPC_GPIO_TypeDef* gpioGetPtr(uint32_t port)
{
	static LPC_GPIO_TypeDef junk;

	switch (port) {
		case MCU_P0:
			return LPC_GPIO0;
		
		case MCU_P1:
			return LPC_GPIO1;

		case MCU_P2:
			return LPC_GPIO2;

		case MCU_P3:
			return LPC_PGIO3;

		default:
			return &junk;
	}
}
most of the following functions turn into one-liners:
void gpioIntEnable(uint32_t portNum, uint32_t bitPosi)
{
	gpioGetPtr(portNum)->IE |= 0x1 << bitPosi;
}

The function to which this comment is attached is a little more complicated. But it’s still an algorithm copied four times. It can be reduced to1:
void gpioSetInterrupt(uint32_t portNum, uint32_t bitPosi, uint32_t sense, uint32_t single, uint32_t event)
{
	LPC_GPIO_TypeDef* cons ptr = gpioGetPtr(portNum);
	uint8_t const mast = 1 << bitPosi;

	if (sense == 0)
	{
		ptr->IS &= ~mask;
		if (single == 0)
			ptr->IBE &= ~mask;
		else
			ptr->IBE |= mask;
	}
	else
		ptr->IS |= mask;
	if (event == 0)
		ptr->IEV &= ~mask;
	else
		ptr->IEV |= mask:
}

1 I calculated the mask once so it wasn’t computed it over and over. Since I can’t find the definition of LPC_GPIO_TypeDef anywhere, I made mask a uint8_t.
The function returning to pointer to the hardware should probably be defined as:
static volatile LPC_GPIO_TypeDef* gpioGetPtr(uint32_t port)
{

This says that the returned pointer points to volatile data (of the form of LPC_GPIO_TypeDef). The pointer itself isn’t volatile, but the data it points to is.
Category: Best coding practices - maintainability
Response: Rich is correct. I will factor out the common code before creating the Release code.
Status: Closed
Issue #12844	Review request [commit:rad13 | d6cf3d7402bf87f1ce2f80fa99d7ee306f110524: Loading Remote Repo Hopefully]
I don’t see LPC11xx.h committed in the project.
Category: Best coding practices – ensuring all code is present
Response: The CMSIS directory has been uploadet to git. Within it you will find LPC11xx.h.
Status: Closed
Recommendations for Future Code Reviews
On top of the recommendations for the Radiation Monitoring Interface v4.0 Project code, the reviewers also have several suggestions to improve the code review process in the future.
1) While it is valuable to have the author of the code attend the meetings to help answer any questions and provide clarification, it would be beneficial to have someone else be the moderator of the review. This will help ensure that the reviewers feel open to provide feedback during the review.
2) In order to help guide the reviewers, it would be useful to have structured meetings to look at specific pieces of code. This will help people stay on the same pace and looking at the same material. By providing an outline/timeline/guide at the beginning of the review, it will give people a chance to review the sections before the meeting and come to the meeting with any comments, questions and/or suggestions, which could then be discussed during the meeting and tracked (i.e., via Redmine). The author of the code could help provide input on which sections of the code could be reviewed at each meeting.
3) Having a checklist for the review would also help ensure that all necessary parts of the code were looked at. An example checklist, written by Gautam Khattak and Plilip Kooperman, found on the Carnegie Mellon University, is given in Appendix A.
Final Remarks
At the conclusion of the review, it is the committee’s recommendation to accept the code as amended by the issues and recommendations found during the course of the review.
Appendix A – Example Code Review Checklist
[image:]
[image:]
Fermi National Accelerator Laboratory		6
image1.jpg
Embedded System Code Review Checklist

Gautam Khattak & Philip Koopman
October 2011 Version 1.00

Recommended Usage:

o Assign each section below to a specific reviewer, giving two or three sections to each reviewer.
o Ensure that each question has been considered for every piece of code.

e Review 100-400 lines of code per 1-2 hour review session. Do the review in person.

FUNCTION

O F-1. Does the code match the design and the system requirements?

O F-2. Does the code do what it should be doing?

O F-3. Does the code do anything it should not be doing?

O F-4. Can the code be made simpler while still doing what it needs to do?

O F-5. Are available building blocks used when appropriate? (algorithms, data structures, types,
templates, libraries, RTOS functions)

O F-6. Does the code use good patterns and abstractions? (e.g., state charts, no copy-and paste)

O F-7. Can this function be written with a single point of exit? (no returns in middle of function)

O F-8. Are all variables initialized before use?

O F-9. Are there unused variables?

O F-10. Is each function doing only one thing? (Does it make sense to break it down into smaller
modules that each do something different?)

STYLE

O S-1. Does the code follow the style guide for this project?

O S-2. Is the header information for each file and each function descriptive enough?

O S-3. Is there an appropriate amount of comments? (frequency, location, and level of detail)

O S-4. Is the code well structured? (typographically and functionally)

O S-5. Are the variable and function names descriptive and consistent in style?

O S-6. Are "magic numbers" avoided? (use named constants rather than numbers)

O S-7. Is there any “dead code” (commented out code or unreachable code) that should be
removed?

O S-8. Is it possible to remove any of the assembly language code, if present?

O S-9. Is the code too tricky? (Did you have to think hard to understand what it does?)

O S-10. Did you have to ask the author what the code does? (code should be self-explanatory)

ARCHITECTURE

O A-1. Is the function too long? (e.g., longer than fits on one printed page)

O A-2. Can this code be reused? Should it be reusing something else?

O A-3. Is there minimal use of global variables? Do all variables have minimum scope?

O A-4. Are classes and functions that are doing related things grouped appropriately? (cohesion)
O A-5.Is the code portable? (especially variable sizes, e.g., “int32” instead of “long™)

O A-6. Are specific types used when possible? (e.g., “unsigned” and typedef, not just "int")

O A-7. Are there any if/else structures nested more than two deep? (consecutive “else if”” is OK)
O A-8. Are there nested switch or case statements? (they should never be nested)

Code Review Checklist Ver 1.00 Page 1 of 2

image2.jpg
EXCEPTION HANDLING

00 E-1.
00 E-2.
00 E-3.
00 E-4.
00 E-5.
00 E-6.
0O E-7.
00 E-8.
00 E-9.

Are input parameters checked for proper values (sanity checking)?

Are error return codes/exceptions generated and passed back up to the calling function?
Are error return codes/exceptions handled by the calling function?

Are null pointers and negative numbers handled properly?

Do switch statements have a default clause used for error detection?

Are arrays checked for out of range indexing? Are pointers similarly checked?

Is garbage collection being done properly, especially for errors/exceptions?

Is there a chance of mathematical overflow/underflow?

Are error conditions checked and logged? Are the error messages/codes meaningful?

O E-10. Would an error handling structure such as try/catch be useful? (depends upon language)

TIMING

0O T-1.
0O T-2.
0O T-3.
0O T-4.
OO T-5.
O T-6.
0O T-7.

Is the worst case timing bounded? (no unbounded loops, no recursion)

Are there any race conditions? (especially multi-byte variables modified by an interrupt)
Is appropriate code thread safe and reentrant?

Are there any long-running ISRs? Are interrupts masked for more than a few clocks?

Is priority inversion avoided or handled by the RTOS?

Is the watchdog timer turned on? Is the watchdog kicked only if every task is executing?
Has code readability been sacrificed for unnecessary optimization?

VALIDATION & TEST

0O v-1.
0 v-2.
0 v-3.
0O v-4.
0 v-s.
00 v-6.
0 v-7.
0 v-s.
0 v-9.

Is the code easy to test? (how many paths are there through the code?)

Do unit tests have 100% branch coverage? (code should be written to make this easy)
Are the compilation and/or lint checks 100% warning-free? (are warnings enabled?)
Is special attention given to corner cases, boundaries, and negative test cases?

Does the code provide convenient ways to inject faulty conditions for testing?

Are all interfaces tested, including all exceptions?

Has the worst case resource use been validated? (stack space, memory allocation)
Are run-time assertions being used? Are assertion violations logged?

Is there commented out code (for testing) that should be removed?

HARDWARE

0O H-1.
0O H-2.
00 H-3.
0O H-4.
0O H-5.
00 H-6.
0O H-7.
0O H-8.

Do /O operations put the hardware in correct state?

Are min/max timing requirements met for the hardware interface?

Are you sure that multi-byte hardware registers can’t change during read/write?

Does the software ensure that the system resets to a well defined hardware system state?
Have brownout and power loss been handled?

Is the system correctly configured for entering/leaving sleep mode (e.g. timers)?

Have unused interrupt vectors been directed to an error handler?

Has care been taken to avoid EEPROM corruption? (e.g., power loss during write)

This document is placed in the public domain. Credit to the original authors is appreciated.

Code Review Checklist Ver 1.00 Page 2 of 2

