

Alexander Moibenko
Alex Kulyavtsev

Vladimir Podstavkov
 11/25/2009

File Aggregation in Enstore
Proposal

11/25/2009 2Enstore File Aggregation Kickoff Meeting

Project Goals
● Writing Tape Marks at the end of the each file is

expensive, it takes about 3 sec

– At the rate 100 MB/sec it is the same as to write
300 MB of data

– Files must be >> 300 MB, few GB is good
● All files “become relatively small” as the tape capacity

grows

11/25/2009 3Enstore File Aggregation Kickoff Meeting

Project Goals
● Experiments claim they do aggregate files, but

“accidents” still happen per enstore monitoring

– We can not depend on file aggregation by users

● Need to handle small files already on tapes during
tape migration

● Automatically aggregate small files < 500 MB into
larger “container” files with container size of few GB

11/25/2009 4Enstore File Aggregation Kickoff Meeting

What files to aggregate ?
● Typical write pattern : Raw data or results of data

processing are grouped in directory (sub)trees

 .../experiment/detector/Year/Month/Day/files

● Minos :

– file is ~ one hour of raw data taking

– “RUN” is one day (~24 files) is good size for
aggregation

● Next generation of neutrino experiments will have similar
data rates (driven by physics) and storage patterns

● Practice shows that experiments put the mixture of “large”
and “small” files into the same directory

11/25/2009 5Enstore File Aggregation Kickoff Meeting

What files to aggregate ?
● Aggregation of files shall account for read access

pattern. Only the experiment knows what read pattern
will be.

● Stakeholders shall provide data access patterns.

● File aggregation policy must be flexible enough to
adopt to different pattern without changing code.

● Per discussion with Minos data are stored and
retrieved from tape as subdirectory tree.

● Aggregation of files by subdirectory tree is good to
start with.

11/25/2009 6Enstore File Aggregation Kickoff Meeting

Pnfs Tags and File Containers
● The grouping of files for writing to tape is controlled by

file_family pnfs tag .

● To control file aggregation the new pnfs tag will be
created to mark top of the directory tree for
aggregation. Files written in subtree underneath will be
aggregated into container files before written to the
tape.

● Initially tar is considered as a container but other
choices are possible.

11/25/2009 7Enstore File Aggregation Kickoff Meeting

Required Features
● Disk caching layer in Enstore

– temporary storage for incoming files, containers and
staged files

– full control over cache disk access to optimize
● IO bandwidth to tape
● concurrent Read and Write operations

– access from all nodes in cluster to any file in cache
● Compatibility with existing pnfs namespace and

enstore tools (encp)

● “Standard” clients / protocols to access system
(e.g. Grid FTP)

11/25/2009 8Enstore File Aggregation Kickoff Meeting

Further Optimizations
In addition to File Aggregation into Containers the system
may provide Write Requests Aggregation in time.

● Enstore does all the work to optimize tape access (mount /
seek / rewind)

● Data caching system shall accumulate requests and
trigger tape writes by tunable parameters, for example

– time window to minimize tape mounts and to
maximize tape lifetime (mount in 12 hours, not 1 hr)

– Number of files (N files > 50)

– By total size of accumulated requests
● Global optimization for the whole system instead of each

separate storage unit (like per disk pool).

11/25/2009 9Enstore File Aggregation Kickoff Meeting

Enstore File Cache
● We introduce local Enstore File Cache

● User access : standard data transfer server
Grid FTP, ssh, etc.

● Files in pnfs namespace map to files in cache

● File System in User Space (FUSE) module provides

– mapping of namespace operations to operations with
pnfs, and

– IO operations to operations with local file cache

– Event feed to Policy Engine (open, close, …)

11/25/2009 10Enstore File Aggregation Kickoff Meeting

Software Architecture

11/25/2009 11Enstore File Aggregation Kickoff Meeting

Hardware Architecture

11/25/2009 12Enstore File Aggregation Kickoff Meeting

Hardware Architecture

11/25/2009 13Enstore File Aggregation Kickoff Meeting

Local Cache Organization
● Cached files are stored with name “pnfs ID”. Files are

stored on cluster FS in a “well known” directory 'hash'
subtree for even distribution

– 012 / 345 / 678 / 9AB / 0123456789AB

● When user accesses the file in FS mounted over
FUSE

– FUSE module uses pnfs for metadata operations
(find file path, check protections, etc.)

– but for the data IO FUSE module opens file in cache
residing on cluster storage

11/25/2009 14Enstore File Aggregation Kickoff Meeting

EVENTS
● Events are generated by Enstore Cache components

and get served by Policy Engine

● Events are logged in persistent storage for recovery.
Event consumers shall tolerate event replay in case of
a failure.

11/25/2009 15Enstore File Aggregation Kickoff Meeting

Types of Events
● FUSE module generated events

– close() on Write – FUSE module generates “event”
when data are written in data layer and file is
closed.

– open() on Read if file is not present in file cache
● User process opening file in FUSE fs is blocked on

open() in FUSE module
● HSM events

– Migrated

– Purged

– Staged

11/25/2009 16Enstore File Aggregation Kickoff Meeting

EVENTS
● FUSE Event is a tuple with

– File ID (pnfs ID)

– Operation (read, write, …)

– Time stamp

– Pnfs directory tags (“File_family”, “Aggregate”)

● Format for other events is TBD

● We can retrieve more information about file when
needed.

11/25/2009 17Enstore File Aggregation Kickoff Meeting

Policy Engine (PE)
● Policy Engine serves events received from different

sources

● PE arranges files (file IDs) into groups with the same
properties defined by rules (e.g. with the same
file_family and aggregation tags, or file path pattern,
etc) to be stored in the same container.

● PE checks if the container is “full” and it is time to
switch to another container (by time window, number
of files in container, total size of accumulated files per
container). In such case PE communicates to
Migration Dispatcher to start file aggregation and
container transfer to the tape backend.

11/25/2009 18Enstore File Aggregation Kickoff Meeting

Candidates for PE implementation
● Event Driven Application Servers (EDAS).

– Sun's Intelligent Event Processing engine (IEP), part
of Glassfish Application Server. It has GUI to set
and edit rules. Open Source.

– Esper's Complex Event Processing engine. High
performance Open Source.

11/25/2009 19Enstore File Aggregation Kickoff Meeting

Event Driven Application Servers
● Optimized to process and correlate streams of events

(tuples) and can access historical data in DB. Used for
network monitoring, security (intrusion detection),
RFID tracking.

● Each event “record” is passed through set of rules
(queries) instead of running query on full set of records
in DB.

● Flexible. “Rules” are described in languages
representing superset of SQL (CQL, EPL, …).
Thousands of rules can be chained or combined in
network.

11/25/2009 20Enstore File Aggregation Kickoff Meeting

Event Driven Application Servers
● operate on events in time window

● process, split, combine event streams

● calculate aggregate properties of the (sub)stream, like
number of events (files), total size

● store data in DB or call execution of the process at the
end of processing chain

● API to provide input data feed and output sink

● Recovery mechanism can be provided outside of
EDAS if not provided internally

11/25/2009 21Enstore File Aggregation Kickoff Meeting

More candidates for PE implementation
● RobinHood, policy engine for Lustre HSM project.

Processes changelog events from MDT. Manages free
space (based on space used and LRU).

● Lustre change logs are available in lustre v1.8 (current
production)

● Written in “C”, may require source code modifications
for integration

11/25/2009 22Enstore File Aggregation Kickoff Meeting

File Aggregation
● When PE has collected “enough” files it triggers

aggregation of files into container.

● File name in container is “hash path / pnfs ID “.

● Ultimate disaster recovery - tape in hand but
namespace is completely lost. Tool will be provided as
part of each container to restore files with names as
stored by user.

11/25/2009 23Enstore File Aggregation Kickoff Meeting

Writing Aggregated Files to Tape
● Container file gets copied to tape as a regular file

using encp

● New record is created in enstore DB file table for each
file in the container with fields:

 crc, volume, drive, location_cookie,
 size, uid, gid, crc_seed

 having the same values as the container file

● Enstore DB file table is amended by new values

– “packaged” = "y" or "n"

11/25/2009 24Enstore File Aggregation Kickoff Meeting

Writing Aggregated Files to Tape (cont.)

● Enstore DB file_copies_map table entries get created
for each file

 f1_bfid <-----> container bfid

 f2_bfid <-----> container bfid

 ...

 fN_bfid <-----> container bfid

● Container gets deleted immediately to save disk space
in cache

● encp modifications may be needed

11/25/2009 25Enstore File Aggregation Kickoff Meeting

File Read
When file is not present in Enstore Cache :

● the process opening file in FUSE fs is blocked on
open() in FUSE module

● FUSE module generates event to Policy Engine

● PE aggregates requests and eventually generates
output “event” to retrive File Container to be processed
by Migration Dispatcher

● Migration Dispatcher controls container retrieval,
unpacking, file purge operations

11/25/2009 26Enstore File Aggregation Kickoff Meeting

Reading Aggregated Files from Tape
● Container file is identified via Enstore DB table

file_copies_map .

● Container is staged from tape.

● Container is unpacked in cluster FS in a separate
subdirectory. Each unpacked file is renamed to the
destination name “hash / pnfs ID ” so it can be
accessed by FUSE.

● All files in the container are marked available for read
and waiting processes are released.

11/25/2009 27Enstore File Aggregation Kickoff Meeting

Space Management
● Policy Engine is responsible to track file usage (LRU)

and account for space usage on cluster FS and select
files to be removed.

● LRU is to start with, high / low water marks for space.

● RobinHood Policy engine was developed to manage
space on large FS. Implements high / low watermarks,
LRU .

11/25/2009 28Enstore File Aggregation Kickoff Meeting

Scope of The Project
● Enstore Cache

– integrate Cluster File System

– develop FUSE module to merge pnfs with FS

● Policy Engine

– Develop event feed, sink, rules
● Migration/Purge Dispatcher

● Select and integrate reliable messaging system
(AMQP standard)

● Migration Modules integrated with Enstore

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

