LQCD Sensor Framework Meeting – 6/3/11

[bookmark: _GoBack]Attendees: Marc Paterno, Eric Lightfoot, Abushek Dubey(via phone), Jim Kowalkowski
Goals for Eric:
3 laid out for Eric in order of increasing complexity:
1) Producing sensor code for measuring the unix process accounting information
2) After that, PBS Job Submission information
3) MPI Monitor “stuff”

General Info:
Where is the documentation for the sensor framework? How does one write something that plugs into the framework, where can he run it here, and how, and all that good stuff?
Abushek doesn’t think there is much in the form of documentation, but in order to test the full framework from end to end, you need to also interface with the Ruby part.
How much of the DDS to database is done?
That is done, and we have actually tested it before. The way it works is from the DDS it used the curl library to send an html post query to ruby on rails, to the html url. Ruby on rails then parses the message and uploads it.
What is application that subscribes to the DDS messages and sends the http posts?
Abushek says it is called “Regional Manager”, and it is written in C++.

Architecture:
DDS is only being used for messaging. In each machine there is something called Local Manager. When Local Manager is run, in each local manager there are N number of threads. So for example if you have 10 different sensors that are currently publishing, there are 10 different threads in that process. Each of these threads is running on a middle-ware called ACM. Located in the ACM-source. ACM is a high precision middleware that is used in scheduling these tasks/threads. It runs as a PBS, and if there is any deadline violation or overflow, it actually catches that and stops. It effectively allows us to monitor how much CPU our sensors are using and cap that resource consumption. Abushek chose to use C++ Because of this library.
LQCD.idl: Defines a DDS topic, we have to make sure there is a DDS topic that corresponds to the process accounting information that we can use. There has to be a struct there, if there is not then we must add a struct so we can pass on this information. The topic is used to communicate to the regional manager, and the regional manager will translate the information from there and produce an html string that will go into the Ruby on Rails part.
Definitions of topic types for mpi process information: With the process accounting, one thing would be that we have to find out if we can actually use the sensor record. A sensor record is essentially a device id, and a value, and a type. Typically most of our sensors are just monitoring info. Sensor name is a unique name, so cpu utilization sensor is a unique name, process accounting sensor is a unique name.
The cluster name is already added by the regional manager, it knows what cluster it’s running on.
Abushek suggests that Eric get familiar with OpenSplice Community Edition, as he will have to use OpenSplice to publish the data. There are 2 components , the first component of the code extracts the data (such as acct_read), the second part is responsible for sending it out on the middleware, which is where the DDS experience comes in.
What is the difference between completed process records, and monitors process records?
Monitored process records can be monitored in real time, whereas completed processes have finished running. Process accounting always needs to be turned on manually as it is off by default.
What machine at Fermilab is usable in testing?
Abushek has performed DDS throughput measurement tests on Kaon and Tev with Amitoj and Nermal, so the infrastructure is set up there.
Abushek suggests that the simplest sensor to understand starting out would be: Node_Swap_Utilization
Eric can look at this as example code on what he needs to be doing. This is how it can be structured.

Functions used:
Static void Log: Log sends out to DDS. Example on line 126 of node swap utilization. The message that you want to log will be written as if you had wrote printf.
Sense: Sense actually measures what has happened.
Static void createsensor: Sensor effectively initializes itself. All sensors are singletons, and their constructors are private. So you can’t directly instantiate a constructor, you need to call createsensor.
Apex helper Create process: Essentially creating a thread that will enter the sense function at the rate of the sensor period. For example, every 10 seconds the static sense function of this class will be executed.

Miscellaneous:
Marc asks if it is possible to have a java program elsewhere that is also communicating through DDS? Abushek replies there is no problem with that.
Marc informed Abushek of the new repository information, and sent an email to help Abushek get into the new repository.
When Eric writes a sensor he can put it in the DDS sensors directory where it belongs.
Code can be compiled with autogen.sh
For each topic that you write you have to have a CommonFiles/TopicManager.h
Eric can talk with Ganati about DDS stuff on oink to see if it is installed. If it is not he knows how to set it up efficiently.
Abushek suggested that a controller for ruby on rails will be required for the process accounting. There may already be one for mpi.

