	 EMMA
	 April 29, 2011

EMMA Configuration Management Guidelines
Jerzy M. Nogiec
1. Introduction

This document contains a set of guidelines to be followed when developing LabVIEW modules for the Cavity Tuning Machine project. The main goal of the guidelines specification is to provide a set of common rules and strategies for developing and releasing software. We need a configuration management mechanism that will support traceability of software, safe development (back-up of software) and parallel development. The ability to work in parallel is needed for segregation of work by different developers or segregation of work on different features/tasks.
2. Repository
We will use Subversion for our revision control. In Subversion, by a convention, a project gets a trunk, tags, and branches directory. Branches are just copies of the trunk stored in the branches directory. The same situation applies to tags. A branch is an independent line of development, sharing a common history with other lines. A branch starts as a copy of another line and moves on from there, adding its own history. The trunk is a line of development, just like any branch.
Fig 1: The repository

[image: image1]
3. Branching and Merging Strategy
I propose to use a stable trunk approach. Although, it has a drawback of possibly excessive merge workload and the negative effect this has on developer productivity it should not be a problem in our case of very limited manpower.
In a stable trunk approach development happens on task branches and the trunk contains stable code ready to be released. A task branch is created for each definable unit of work. Developers can develop in parallel and merge to the trunk when the development of a task is finished and tested. If tasks are defined properly the probability of merge conflicts will be minimal. Each developer should update his/her task branch from the trunk very often (at least daily) to avoid integration problems. Also small, self-contained (atomic) changes should be recorded in the source repository.

Fig 2: Branching and merging

[image: image2]
If integration testing is required before finishing the task and the test involves more than one task branch there are two possible approaches:
· Update from another task branch and perform integration test in your development branch

· Create a separate integration test branch and perform testing there.

I would recommend using the latter approach, which does not introduce untested code from other modules to a development branch.
4. Releases

Releases will be done from the trunk, by tagging a specific version. Sometimes it is necessary to support more than one release. In such a case, bug fixes for specific releases can be done in separate release support branches.

Fig 3: Support of releases

[image: image3]
5. Rules
Rule 1: Trunk contains only stable and tested versions of the software.

Rule 2: Develop in your development/work branch.

Rule 3: Publish to a development branch frequently to save history of development.
Rule 4: Prefer small, self contained (atomic) changes to be recorded.

Rule 5: Merge from the trunk to a work/task branch (catch up) frequently (e.g. daily).

Rule 6: Resolve any merge conflict on your work branch immediately when discovered.

Rule 7: Merge to the trunk whenever a complete unit of functionality is finished and tested.

Rule 8: Use a separate integration branch for integration tests if the code is being developed in more than one branch and is not finished (cannot be merged into trunk).

Rule 9: Releases are done from the trunk and are accomplished via tags.
Rule 10: Use meaningful log messages, describing what you changed, why and list modified modules.
time

trunk

Branch 2

Branch 1

Branch 3

time

START

Release 0

Release 1

Task 1.1

Task 1.2

Task 2.1

Task 3.1

time

Release X

Release Y

Release Z

Support of Release X

Support of Release Y

EMMA Configuration Management Guidelines 1 of 3

