	 EMMA
	 May 18, 2011

LabVIEW Style Guidelines

J.M.Nogiec
Design
Although LabVIEW is not a traditional text- based programming environment, the major principles of software design are very much applicable there too. The correct design that will lead to a maintainable and robust system needs to follow the following principles: loose coupling, high cohesion, information hiding/encapsulation, and modularization.

Coupling
Coupling is a measure of degree of independence between modules. Modules that interact with each other a lot, so their functionality is codependent are tightly coupled. Louse coupling denotes a relative lack of dependency between modules, so that a change in one module does not necessitate a change in another module. It is especially important to design the software this way, because hidden dependencies make changes very difficult, costly and cause errors when modifications are being done to a module that is tightly coupled with other modules.
Cohesion
Cohesion is a measure of collecting the similar functionality in a module. This facilitates changes in functionality and limits them to one module. Therefore, highly cohesive and loosely coupled modules are ideal, resulting in well-structured and extensible, flexible software.
Information Hiding
Try to hide implementation details of a subVI. For example, instead of specifying set bit 1 use set power ON, which will hide how setting the power ON or OFF is performed. Use private data members in classes.
OO Design (Modularization)
As in a classical object –oriented design modules abstracting an entity are preferable over modules identified by their functionality. This way all the functional aspects of dealing with a device or output will be placed in a single module and not distributed over a collection of unrelated subVIs. Therefore, we are going to use object oriented programming paradigm available in LabVIEW.
Packages/Libraries
LabVIEW provides the Project Library, or .lvlib, that can be used to provide effective name spacing. Any file placed inside a library has the library name prepended to its name to create a unique name. This way files with the same name placed inside different libraries will not create name conflicts. Also, all files inside the library can have their access scope defined, allowing to protect access to internal VIs and their functionality. It is recommended to create a project library for each distinct module.

[bookmark: _GoBack]

Interface
· Avoid creating VIs with already existing names. Use a two letter module identifier in front of each subVI name to guarantee their uniqueness (e.g. FpDAQ, FpExecutive for the Field Probe module).
· [bookmark: icon_layout][bookmark: connector_pane]Use a consistent connector pane layout. If possible, try to use the default 4 × 2 × 2 × 4 connector pane pattern to leave extra terminals for later development.
[image:]
· [bookmark: req_rec_opt]Define Required, Recommended, and Optional settings on the connector pane.
· Include error in and error out clusters on all subVIs, even if the subVI does not process errors, because these clusters are helpful for controlling execution flow.
· Use Data Entry to set the control item to coerce values into the desired range: Minimum, Maximum, and Increment.
· Define default values for inputs in such a way that the VI would not crash when run with these default values.

Documentation
· Describe the VI in the VI Description on the Documentation page of the VI Properties dialog box.
· Add descriptions for all controls and indicators that are wired as inputs and outputs on their Documentation page of the Properties.
· Enter the tip strip text on the Documentation page of the Properties for each control and indicator.
· [bookmark: create_BW_icon]Create a meaningful icon for every VI.

Block Diagram
· Limit the block diagram to one screen.
· Try to limit the VI’s complexity, by restricting the number of nodes in the VI. Since there is roughly a one-to-one relationship between LabVIEW nodes and SLOC (Source Lines of Code) and the VI roughly corresponds to the function, try to limit the size of the VI to couple hundred nodes.
· Use comments to document the diagram.
· Group related data into clusters and consider saving them as a strict type definition.
· Use the standard left-to-right data flow (wire inputs on the left and outputs on the right).
· Prefer shift registers over local variables.

Error Handling
· Each module should have a strict type definition containing a list of error names generated by the module (ModuleErrorList.ctl) in order to use mnemonics in wiring diagrams as opposed to error numbers.
· Each module should be accompanied by a standard LabVIEW error definition file named module-errors.xml to be placed in the labview\user.lib\errors directory. Follow LabVIEW’s on-line help to learn how to create and modify XML error definition files.
The error numbers should begin at the assigned to the module starting value.
· Skip subVI diagrams on error using an error case structure (with an exception of the VIs that do not skip their action on errors (e.g. cleanup functions closing files or references, resetting device).

User Interface
· Contents
· Provide necessary feedback to the user.
· Display only all necessary info on the screen and limit the quantity of displayed information.
· Select optimal display method (graph, numeric, animation).
· Layout
· Group related controls (e.g. use panels)
· Try to maintain symmetry.
· Make size in proportion to importance.
· Hide the LabVIEW toolbar at run-time.
· Use standardized and properly sized fonts.
· Consistency (common look and feel)
· Maintain consistent appearance for all dialogs and subvi panels, text and objects
· Ease of use
· It should be evident how to use the system
· Consider some explanation if necessary, such as tips or text explanation.

References
· http://zone.ni.com/reference/en-XX/help/371361F-01/lvdevconcepts/checklist/
· http://zone.ni.com/devzone/cda/tut/p/id/9648

image1.emf

