Draft, 1.0
[bookmark: _GoBack]Prototype NOvA LEM Web Service Implementation Using Commodity Hardware
Igor Mandrichenko, Andrew Norman,
11/15/2015

Introduction
NOvA Library Event Matching algorithm was successfully implemented in Amazon Cloud earlier in 2015 (https://cdcvs.fnal.gov/redmine/attachments/download/28065/LEMAerospikeStatusAndResults.pdf)

That implementation was based on the two-database design idea. The ~80 million events library was implemented as a distributed no-SQL database using Aerospike product and the Metadata Database was a single Postgres server. The Client cluster was an array of AWS instances with up to 400 cores.

The AWS implementation demonstrated identification performance above 100 raw events per second at 400 client threads.

The database-based design has certain benefits compared to alternative architectures. It allows easy and scalable increase of the library capacity as well as, independently, the client cluster size.

LEM as a Web Service
In September 2015 we proposed a design of LEM as a web service (https://cdcvs.fnal.gov/redmine/documents/919). The idea behind the design is to hide internal LEM implementation behind a web service (HTTP) interface. This design has the following benefits:
· It completely decouples the client and the server implementation
· It allows the client to use convenient and popular HTTP interface to communicate with LEM
· It allows for easy expansion of LEM both in terms of the library size and the computational power
· It can be implemented anywhere and accessed from anywhere

Implementation
LEM Web Service was implemented in October-November 2015 using “commodity” hardware. We used 33 general purpose “farm worker” computers. Each computer had 16 cores, 32GB memory and 1GBit/s network interface.

LEM Web Service design is outlined in the Figure 1.

[image:]
Figure 1. LEM Web Service Design

The Event Library
The Library was implemented as a no-SQL database, using CouchBase product vesion 4.0, distributed over 20 nodes without replication. The 76 million events library occupied 165GB of disk and fit completely in the memory cache of the distributed server.

The Metadata Database
The Metadata Database was implemented as a pair of replicated Postgres 2.6 servers. Each LEM identifier processes picked one of the servers semi-randomly and continued using it. Addition of second Metadata server increased overall performance by 20%.

Application Server
Application Server was a set of 11 identical web servers running the event identification code as a web application. The client was directed to actual server by the HTTP proxy process, which selected the actual server from the set in round-robin fashion.
Performance Results
Performance of the Prototype was measured by running multiple (up to 500) concurrent client processes. We used events from the library themselves as “raw” events. Each client process would issue up to 2000 request to pick a random event and identify it. Of course, while identifying a random event, this event was excluded from the library lookup results.

We measured performance of the cluster as a function of the number of concurrent client processes to observe the saturation of the performance. The results in terms of the event identification rate are shown on Figure 2.

[image:]
Figure 2. LEM web service prototype performance

As you can see, the performance reached about 15 events/second and saturated at about concurrent 200 clients, but did not deteriorate up to 500 clients.

We believe that the performance was limited by the network throughput within the service. Earlier results with AWS implementation support that because in AWS, we used 10Gbit/second network connections, instead of 1BGit/second for this cluster.

1

image1.png

image2.png

