This document details how the new zero-suppressed TDCs work...or at least how | (Kaz) believes it
works...

The new TDC FPGA code written by Grass eliminates zeroes in the TDC data at the level of the TDC logic
when data are written into the board during data-taking. During runl, this zero-suppression was
performed in the VME CPU when CODA tried to read the TDCs at trigger. In essence, the CPU acted as a
filter to removed the extra zeroes, at the cost of extra overhead in deadtime.

Some semantics:

SPILL — 5 seconds of beam ~once a minute

EVENT — number of triggers received by the DAQ. During runl, there were on the order of hundreds of
EVENTS per SPILL.

HIT — number of particles seen by a particular scintillator in a hodoscope or wire in a wire chamber (each
of which maps to a TDC channel). There may be multiple HITS in any element per EVENT.

TDC Configuration:

The new TDC has a circular ring buffer of 256 buffers for every 4 channels. Each buffer is 1 MB in size,
and can record a HIT. The circular buffer can be split into 2, 4, or 8 segments, and the user can specify
how many of these segments one wants to use for data-taking. The advantage of this segmentation is
that if the number of HITS per EVENT is low, one can simply use say, segments 1 and 2 only, and reduce
the copy-in-progress (CIP) time of the TDC. In this case, segments 1 and 2 will act as a circular buffer by
themselves, while ignoring the rest of the segments.

Each buffer has a running clock which resets to zero once it reaches the Buffering Timing Window.
When a hit is received in a block, the current time on the clock is recorded. The TRIGGER is treated in a
similar manner to a HIT, and occupies the last block of a particular EVENT. One tick of the clock is 0.44ns.
Therefore, when one calculates tTDC = tTRIGGER-tHIT, the resolution from both the TRIGGER and the
HIT must be considered. The same goes for calculating the effects of differential non-linearity, since the
timebins that the TRIGGER and HIT occupied may have different widths.

It is important to understand there are 2 timewindows in use. The Buffering Timewindow, and the
Selection Timewindow. The Buffering Timewindow is set by the segmentation, and gives the full
window within which the TDC values are recorded. The Selection Timewindow is a smaller window
inside of the Buffering Timewindow within which the TDC values are read out. The Selection
Timewindow is designed to reduce data volume in the event that we are able to narrow our signal to a
range that is smaller than the Buffering Timewindow.

The specs of the TDC code for each segmentation setting can be found in Table 1.

Table 1

CSR [7:5] Segmentation Circular Buffer Buffer Timing Window | CIP Time

Size (MB)
000 8 32 512 ns 32x16x16ns = 8us
001 4 64 1024 ns 64x16x16ns = 16us
011 2 128 2048 ns 128x16x16ns =32 us

The size and split of each 1MB buffer in the ring can be adjusted according to Table 2. This feature
allows us to use the boards as multi-hit TDCs.

Table 2
CSR [2:0] Number of Events Max number of words/event
5 32 32
4 16 64
3 8 128
2 4 256
1 2 512
0 1 1024
Scalers:

Each hit seen by a TDC channel can be scaled in addition to having its time recorded. There 8 buffers
available per channel. However, the 64 channels must be started/stopped/cleared in unison. Therefore,
if one wants to stop and read channel 1, all 64 channels must be stopped. However, if the first 64-
channel buffer is stopped, the second buffer can be invoked while the first buffer is being read and
cleared.

Multiple Hit Elimination:

In many cases with our wire chambers and proportional tubes, one particle may create multiple ions
along its track as it traverses the gas. Each of these ions may get attracted to a single wire, albeit with
different times. The result is multiple HITS appearing in a single wire from one particle. The
conventional means of eliminating this multiple HIT issues was to simply grab the first HIT from the train
of pulses. However this elimination was performed at the analysis stage, after the data were written to
disk. The multiple HIT elimination feature of the TDC allows one to inhibit for a user-defined time (in
multiples of 4ns) after a hit has been seen in a particular channel. There are two inhibit modes. One is
the “non-updating mode”, where an input is inhibited for a set amount of time. The second is the
“updating mode” where the inhibit-timer is refreshed every time a new HIT is seen during the inhibit
timewindow. (i.e if HIT A creates a inhibit timewindow of 16ns, and if HIT B comes at 10ns, then not
only is HIT B inhibited, but the inhibit timewindow will go on for another 16 seconds from the front edge
of HIT B, for a total inhibit timewindow of 26ns, unless another HIT comes in and further extends the
window).

Data Format:

The raw CODA data format has the following event types:

1
2.
3.
4
5

FEE information event
Physics event

Slowcontrol event

Beginning of Spill (BOS) event
End of Spill (EOS) event

Of these event types, the FEE information event and the Physics event are relevant to the TDCs.

FEE (Front-End Electronics) Information word.

The FEE information word is a flag that tells us what the TDC settings are in terms of timewindows used,

multihit elimimnation on/off, etc. There is a FEE word available for each board.

0x84 = Event type
0xe906f011 = FEE ID
OxffffOBCD = TDC Registry word
o A:0
0 B: 0=rising edge only, 1 = both rising and falling edges
0 C: 0=8segmentation, 2 =4 segmentation, 6 = 2 segmentation
0 D: Event buffer on Table 2. 0 =1 event, 1 =2 event, etc...
0xO0BCD0000= TDC Registry word (pertains to the multihit elimination and scaler selection
setting). CD controls the multihit elimination setting, while B controls the scaler setting.
0 Multihit Elimination: ‘CD’ in hex. In Binary, that’s 8 bits: abcdefgh
= cdefgh goes from 000000 (0 in decimal) to 111111 (63 in decimal). The
calculation of the length of the inhibit pulse is: 4ns x (4+ clock_cycle), where
clock_cycle is the control value above in decimal notation (ranging from 0-63)
= b: 0is non-updating mode, 1 is updating mode
= a: 0=disable multihit elimination, 1 = enable multihit elimination
= Example:

e ‘CD’=B3 (hex)is 10110011 in binary. This means Enable multihit
elimination, use non-updating mode, and the length of the inhibit pulse
is 51. The actual inhibit pulse in ns is then calculated as:
4ns x (4+51) = 220ns. The full length of the inhibit pulse can range from
16 to 268ns.

O Scaler selection status: ‘B’ in hex. In binary, that’s 4 bits: abcd.
= There are 8 scaler buffers in this version of the TDC.
= Each bit above is set by the user to determine which scaler buffer is active and
in use. Only one scaler buffer can be active at a time.

= Example:
If we use scaler buffer 5, then this will be 0101, and ‘AB’ = 05 (hex).
e. This control word is the TDC selection timewindow. OxABCDOEFG

0 EFGis the low limit of the selection window. That’s 10 bits in binary. Conversion from
binary to time is 4ns x (clock_cycle in decimal)

0 BCDis the high limit of the selection window. That’s 10 bits in binary. Conversion from
binary to time is 4ns x (clock_cycle in decimal)

0 Ais selection window on or off. 0or 8.

0 Example:
834800CC is selection window ON, 348 (hex) = 840 clock cycles = 3360ns, CC (hex) =
204 clockcycles = 816ns

0 If the lower limit is higher than the higher limit, there will be no data (there are no
internal checks).

TDC Physics Event:

The data format for the new TDCs is considerably different compared to the old TDC code. In the new
TDC, both the trigger time and the individual HIT times are recorded for each event. The TDC time can
be calculated from the difference of these two values. In each event (CODA event), the header contains
the trigger time.

In each TDC physics event, we have:

Word1l: Number of words in event.
Word2: ROCID
Word3: VXticks

Word4: FEE Event

Word5: Board ID and number of words in TDC buffer. Oxabcdefgh. abcd refers to the board ID. efgh is
the number of words in the TDC buffer until the next FEE event (new Board).

Word6: dummy word...exists solely to enable block transfer through DMA.

Word7: Header word gives trigger time. Oxabcdefgh, which is 32 bits (0-31).

- Bits 0-3 (‘h’): Fine time. 0000 to 1001 (bin), which is 0-9 (decimal).
Rising edge: 1-9 (clock _cycle). FineTime = 4ns — [444ps x (clock_cycle)]
Falling edge: 1-8 (clock_cycle). FineTime = 500ps x (clock _cycle)

- Bits 4-15 (‘efg’): Rough time. Oto 111111111111 (binary), which is 0-4096 (decimal).
The RoughTime = 4ns x clock_cycle (0-4096).

- The trigger time = RoughTime + FineTime

- Bit 16: always 1, since we always use the rising edge for the trigger. (‘d’)

- Bits 17-19: always 0. (‘d’)

- Bits 20 —30: Total number of hits in event. (‘abc’)

- Bit31: Always 1. Means this word has the trigger information. (‘a’)
- Example:
0x8a3130e7
8a3(hex) = 1000 1010 0011 (bin) = with 163 hits to follow in this event.
1 = Rising edge
30e = 782 (clock_cycles) =3128 ns
7 =4ns—(7 x0.444) = 4ns - 3.108 ns = 0.892
Trigger time =3128.892 ns

Word8: Data Word. Header word gives data time. Oxabcdefgh, which is 32 bits (0-31).

- Bits 0-3 (‘h’): Fine time. 0000 to 1001 (bin), which is 0-9 (decimal).
Rising edge: 1-9 (clock_cycle). FineTime = 4ns — [444ps x (clock_cycle)]
Falling edge: 1-8 (clock_cycle). FineTime = 500ps x (clock_cycle)

- Bits 4-15 (‘efg’): Rough time. Oto 111111111111 (binary), which is 0-4096 (decimal).
The RoughTime = 4ns x clock_cycle (0-4096).

- The trigger time = RoughTime + FineTime

- Bit16: always 1, since we always use the rising edge for the trigger. (‘d’)

- Bits 17-19: always 0. (‘d’)

- Bits 20 — 23: Hit number of this event. (‘c’)

- Bits 24-27: Channel number. (‘b’)

- Bits 28-29: Cable number: (‘a’)

- Bit30: Always 1. No reason. (‘a’)

- Bit 31: Always 0. Means this word has the data information. (‘a’)

- Example:
0x6a3120e7
6a3(hex) =0110 1010 0011 (bin) = Cable3 Channell0 Hit3
1 = Rising edge
20e =526 (clock_cycles) = 2104 ns
7 =4ns—(7 x0.444) = 4ns - 3.108 ns = 0.892
Data time = 2104.892 ns

The clock is a ring, so the trigger time can appear to come before the data time. There are no flags
indicating that the ring has reset. So the decoding algorithm must calculate both values and adjust for
the ring buffer reset.

