9/21/2015		Draft v0.2
NOvA LEM Implementation Using Distributed NoSQL Event Storage
Igor Mandrichenko, 9/21/2015
Proposal

Introduction
[bookmark: _GoBack]NOvA Library Event Matching (LEM) algorithm[1] is used at the event reconstruction stage of the NOvA data processing to identify original neutrino and the type of its interaction with the detector matter. Current NOvA implementation is based on a 64 core computer and stores all ~80M library events in memory. The memory size of that computer does not allow further expansion. Further increase of the library size by a factor of 10 or even 100 is believed to allow improve the algorithm efficiency in terms of accuracy of the event identification. Our goal is to build a LEM facility with the capacity of at least 1 billion library events without any loss in the performance in terms of the events identification rate and use the architecture, which can be expanded even further, if necessary.

We will use the architecture with separate Library Database, Metadata Database and Application Cluster. The Metadata Database will be used to pre-select library events, which look sufficiently close to the raw events in terms of geometry and other physical characteristics in order to reduce the amount of the event matching calculations necessary per raw event. This architecture was implemented in the POC prototype built in AWS earlier this year[2].

Requirements

· Library event size: ~2.2KB in average per event in JSON format
· Metadata size: 0.5KB per event
· Event identification rate: 100/second
· Pattern calculations per raw event: 10,000, in average takes about 2.5 seconds if performed sequentially
· Scalable architecture: the architecture need to allow scalable expansion of the facility both in terms of library size and client cluster size
· Access from batch processing environment: this facility will be used by the batch jobs running in grid/cloud environment and needs to be able to work robustly with large and unknown number of clients

Results from the prototype
As reported in [2], we built a prototype of LEM facility in AWS. The prototype architecture is shown in Fig. 1

[image:]
Figure 1. LEM Prototype Architecture
Most important results of the benchmarking tests of the prototype are:
· This architecture is very flexible with respect to changing the size of the Event Library and the Client cluster because it separates them into loosely coupled components of the system.
· Desired performance of 100 raw events/second was achieved at around 300 client threads running on 20 AWS virtual machines.
· LEM pattern matching calculations takes between 2 and 3 seconds per 10,000 template events and is proportional to the number of hits in the raw event.
· With 300 client threads, library event retrieval time for single client was about 0.8 seconds per raw event with 10,000 library events retrieved.
· Metadata event lookup took up to 0.2 second per raw event.
· Total raw event processing time for single thread was 2.5 + 0.8 + 0.2 = 3.5 seconds.
Proposed architecture
We propose to use essentially the same architecture as the prototype, with separate Library Database, Metadata Database and Application Cluster. We will use HTTP as the protocol of communication between the clients and the facility. This will allow the client to view the facility as a simple web service with well defined REST-like interface. Actual LEM code will be executed by about 400 distributed Application Server threads acting as HTTP servers. HTTP Multiplexer will be used to distribute the load between the servers.

In order to increase performance, we propose to use 2x or 3x replicated metadata database and distribute load from the Application Servers among the individual database servers in round-robin fashion.

The rest of the architecture will be exactly the same as for the prototype.

[image:]
Figure 2. Proposed LEM Facility Architecture

Requirements
General requirements listed above translate to the following requirements for individual components of the facility:

· HTTP Multiplexer:
· handle 100 requests/second
· single request takes about 3.5 seconds
· total active requests: 3.5 seconds * 100/second = 350
· Metadata databse:
· 100 queries/second combined for all servers
· 500GB total dataset size, needs to be in RAM for each server
· average active connections, combined: 100/second * 0.2 seconds = 20
· Template library
· 100 queries/second, 1M events/second
· 2.2 TB capacity without replication, in RAM
· average active connections, combined: 100/second * 0.8 = 80
· Network connection between the Library and the Application servers:
· Total throughput: 2.2GB/second = 20Gbit/second

Options
The proposed facility can be implemented in-house or in the cloud. In particular, Amazon Cloud looks like an attractive implementation platform, in addition to the fact that we have implemented the prototype of the facility there.

Detailed cost estimate spreadsheet can be found here: https://cdcvs.fnal.gov/redmine/documents/919

In-house hardware cost is estimated at $140,000
Hardware cost/year assuming 5 years lifetime: $28,000
Alternative yearly cost estimate for hardware and support cost, assuming $0.035/hour/core: $103,000
Yearly cost for AWS: $164,000

Discussion
In terms of per year price, these two options seem to be very comparable, especially when one takes into account that the support (power, cooling, sys admin, floor space, etc.) cost for in-house solution is not well known.

AWS solution requires 3-years upfront payment, whereas the in-house option requires initial investment in hardware, which seems to be much smaller than the ongoing support cost.

Because we propose to build the facility as a web service, functionally, these 2 solutions will be virtually identical to each other from the client standpoint.
References

1. C. Backhouse, R. B. Patterson, Library Event Matching event classification algorithm for electron neutrino interactions in the NOνA detectors
2. Building NOvA LEM event identification facility using Aerospike database and Amazon Cloud
3. Detailed cost estimate breakdown: https://cdcvs.fnal.gov/redmine/documents/919

image1.png

image2.png

