The g-2 NMR-DAQ

This document is a draft of a guide to setting up and using the g-2 NMR-DAQ. It is a work in
progress as is the DAQ itself, but it's time to start.

Table of Contents

1. Quick Start
2. Installation
3. Basic Tutorial

4. Experiment Layout
Quick Start
Installation

The project has several dependencies that need to be installed first. Linux package manage has
most of them.

sudo yum install mysgl-devel libfftw-devel libarmadillo-devel zeromg-devel

boost-devel sglite-devel unixODBC-devel

Other Dependencies

« MIDAS
> use the version controlled Redmine Repository, gm2midas

o git clone ssh://p-gm2midas@cdcvs.fnal.gov/cvs/projects/gm2midas

« gm2dagqg

°© git clone --recursive ssh://p-gm2dag@cdcvs.fnal.gov/cvs/projects/gm2daq
« ROOT

o Fast-DAQ-Core

> FID Analysis
> boost

o ZeroMQ

With all those taken care of, go ahead and clone the repository for the DAQ. There are two projects
that are very similar in operation.

« Simple DAQ

mkdir -P ~/Applications && cd ~/Applications

git clone —--recursive https://github.com/uwmuonlab/gm2-simple-dag simple-dag

» g-2 NMR DAQ

https://midas.triumf.ca/MidasWiki/index.php/Main_Page
https://cdcvs.fnal.gov/redmine/projects/gm2daq/wiki
https://root.cern.ch/drupal/
https://github.com/mwsmith2/fast-daq-core
https://github.com/mwsmith2/fid-analysis
http://www.boost.org/
http://zeromq.org/
https://github.com/uwmuonlab/gm2-simple-daq
https://github.com/uwmuonlab/gm2-nmr-daq

mkdir -P ~/Applications && cd ~/Applications

git clone --recursive https://github.com/uwmuonlab/gm2-nmr-daqg gm2-nmr

After cloning the repository, copy common/example/expt-env to common/.expt-env and change
the appropriate variables. The most likely one needing to be altered is the EXPT_IP which should be
the hostname or url for the machine running mhttpd. Then you'll probably want to intialize the
ODB to a safe size (50 MB) with odbedit -e <expt-name> -s 50000000. With the ODB initialized,
you can take the last step of setting up some of the ODB variables the way we want them. This is
made simpler with mhelper.

mhelper

This is optional, but it provides a python interface to aspects of MIDAS, the ODB, and the
experiment itself. Install the command line utility like so:

cd ~/Applications/simple-daqg/common/code/mhelper

sudo python setup.py install

With mhelper you can simply point to a json file of a certain format, such as
common/examples/add_to_odb.json, and run mhelper <path-to-json>/add to odb.json.

Operation

If you're having issues getting all the components to build see the more in depth installation section.
With all the components properly built, you can run the DAQ in a few different ways. The run
control scripts are in the online/bin/, and they work by calling the configured frontends, analyzers,
and MIDAS utilites to run in the their own screen. There is another option to deploy a python utility
call mhelper. The mhelper utility figures out which experiment you're working on based on your
current working directory, and it calls the run control scripts for you. Here are two equivalent ways
to start the experiment.

~/Applications/online/bin/start dag.sh

mhelper dag start

Confirm that the programs are running as expected by going to the address and port specfified in
the .expt-env file (default is nmr-daq:8080). The familiar MIDAS web interface should let you know
that the experiment is alive.

Configuration

Several overall experimental parameters are stored in the ODB under Params. Many of the
frontends and slave workers also load JSON configuration files from common/config. There will be a
way to change these settings from the ODB in the future, but for now one needs to edit the JSON
files manually.

http://github.com/mwsmith2/mhelper

Output

The experiment produces data based on some ODB settings. It can produce both MIDAS files and
optionally ROOT files. ROOT output is off by default, but can be controlled with
"/Params/root-output" in the ODB. The data is dumped to resources/data. In addition to digitized
data the ODB is dumped to history, the JSON configuration used is dumped to history, and runlog is
dumped to the log directory.

Troubleshooting

The best resource when things go awry are the log files. The MIDAS log is found at
resources/log/midas.log by default, and the worker logs are found in /var/log/1lab-daq/.

Installation

Installing Scientific Linux 6

We are going start at the start here. | made this guide based on getting a branch new computer up
and running at Fermilab. The first step was installing the OS itself which was done with a boot DVD
from the Fermilab computing division.

Caveats: It was a network boot disk for me, so | couldn't do anything until internet reach the
computer's location in the mezzanine.

Create Principal User

| went the with some collaboration favorites * username: newg2 * password: [standard-password]
* root: [collab + standard password] * hostname: [nmr-daq]

Caveats: * these will depend on the machine, but it's probably best to have standards for this * the
user is not a sudoer by default on this distro, but you can change that by adding to /etc/visudo
newg2 ALL=(ALL) ALL

Setting Up the User Space

First thing we want to do is create some standard directories to use and keep organized. *
~/Applications: for midas experiments and potentially other user tools * ~/Packages: for user
controlled packages like gm2midas and whatnot * ~/Workspace: a separate location for working
and analyzing data * /home/data: collect all of the data under one roof * midas gets a directory
here * each midas experiment gets a subdirectory (i.e. /home/data/midas/gm2-nmr)

Caveats: You may want to put the data directory in /data instead, but if you had a flash (or small
separate) boot disk, you don't want to do this. It will mount the data directory on the small disk
partition

Install zsh (optional)

Bash will work just fine, but I've really come to like zsh. I'd recommend trying it at least. You can get

it from the system's package manager

sudo yum install zsh

Then you'll want to get oh-my-zsh or prezto for configuration,
https://github.com/robbyrussell/oh-my-zsh. My favorite default theme is mrtazz, so | changed that
in the ~/.zshrc file.

Caveats: You want all or your zsh scripts to work in bash (zsh is mainly better for interactive use), so
you want them to have the same environment. It becomes a bit annoying to manage environment
variables for both bash and zsh, so | would recommend moving shell agnostic lines to a separate
file that is sourced by both .zshrc and .bashrc.

Install MIDAS

You'll need to initialize the kerberos principal on the machine, so that you can pull from the
Redmine. Kerberos comes with Fermilab's Scientific Linux distribution, but if it isn't present in your
linux installation you can probably get kerberos via the package manager (yum install krb5, apt-get
install krb5, etc.) and the Fermilab configuration file can be found here:
http://computing.fnal.gov/authentication/krb5conf/.

With kerberos alive and well on your new computer go ahead and clone the gm2midas package
into the appropriately named ~/Packages directory. Instructions on downloading the packages can
be found https://cdcvs.fnal.gov/redmine/projects/gm2midas/wiki/, but the gist that you need for
now is this.

cd ~/Packages

git clone ssh://p-gm2midas@cdcvs.fnal.gov/cvs/projects/gm2midas

Now we are almost ready to compile MIDAS. | had to install mysql before compiling, but that could
be different case to case.

sudo yum install mysgl-devel

Then compiling MIDAS was fine.

cd ~/Packages/gm2midas/midas
make midas

The next step is setting up the appropriate environment variables for MIDAS. | put mine in a
separate file, ~/.midas-env, sourced by .bashrc (and .zshrc for me).

|II!II!!!I!!!!II

A short script setting up some MIDAS environment variables

export MIDASHOME=~/Packages/gm2midas/midas
export MIDASiROOT:$MIDASHOME

export MIDASSYS=S$SMIDASHOME

export MIDAS EXPTAB=/etc/exptab

export DAQ DIR=~/Applications/gm2-nmr

export ONLINEDISP=~/Applications/gm2-nmr/online/display
export ROMESYS=~/Packages/gm2midas/rome

LD LIBRARY PATH=$MIDASSYS/linux/lib:$LD LIBRARY PATH
PATH=$PATH: SMIDASSYS/linux/bin

PATH=SMIDASSYS/linux/bin:SMIDASSYS/utils:S$SPATH
PATH=SDAQ DIR/resources/bin:S$SPATH

Install ROOT

We have another old friend to get up and running on our new machine, ROOT! | ended up building
ROOT from source, the guide for which is here
https://root.cern.ch/drupal/content/installing-root-source. | would recommend installing all of the
optional packages, or at the very least fftw and python (see
https://root.cern.ch/drupal/content/build-prerequisites). After getting the third party libraries
installed, building is simple.

cd ~/Packages/

git clone http://root.cern.ch/git/root.git
git checkout -b v5-34-08 v5-34-08
./configure --all

make -j4

Then we ant to add the initialization script to our shell initialization script.

~/Packages/root/bin/thisroot.sh

Caveats: * ROOT is on version 6 which should work for the code in all the DAQ packages, but it isn't

the officially ROOT version we want to use yet.
* DO NOT DO "make install" with ROOT. The preferred method is bringing it into the environment
by sourcing a script in your .bashrc file.

~/Packages/root/bin/thisroot.sh

e the source line is a bit more obtuse for zsh:

pushd ~/Packages/root >/dev/null; . libexec/thisroot.sh; popd >/dev/null

Set up ssh (optional)

The SLF6 distribution doesn't come with openssh set up out of the box, so | set that up with the
following lines.

sudo yum install openssh-client openssh-server

ssh-keygen
chmod 600 ~/.ssh/*
chmod 700 ~/.ssh

Additionally | commented out the "ALL" line in /etc/host.deny, and changed passwordAuth to yes in
sshd_config

Set Up Python (optional)

Python is a very useful tool for prototyping and quickly inspecting things, so let's go ahead and get
it running with all some nice, standard scientific libraries. One of the first things any python set up
should get is to the package manager, pip. Instructions for installing pip are found on the project's
website, https://pip.pypa.io/en/stable/installing.html. After installing pip we can install all the

third-party libraries we want.

sudo pip install numpy scipy matplotlib scikit-learn

Caveats: * | had to install the python headers before anything else

sudo yum install python-devel

« | still had to install a bunch of dependencies before getting the packages above to install with pip

sudo yum install libpng-devel gt-devel PyQt4 tkinter cmake lapack blas

Installing the g-2 NMR-DAQ

Clone the code from the Redmine

git clone --recursive ssh://p-gm2dag@cdcvs.fnal.gov/cvs/projects/gm2daqg

Caveats: * the "--recursive" option is to ask git to clone the code from the submodule as well as the
container repository * if you forget it, or need to pull submodules into an already initialized repo
use the following instead

git submodule update --init --recursive

nmr-core

The nmr-core submodule needs to be be built first, but that will probably require some
dependencies first. Some were simple, others not so simple.

g++

The first one is g++4.8 or newer to accommodate c++11 features. To get this in Scientific Linux you
need to install the devtoolset-2. The solution to this was found on
http://stackoverflow.com/questions/29790076/error-while-installing-gcc-4-8-on-scientific-linux-6. |
then added the tools to the path

-0 /etc/yum.repos.d/slc6-devtoolset.repo

//linuxsoft.cern.ch/cern/devtoolset/slc6-devtoolset.repo
yum install devtoolset-2
'SPATH=S$PATH: /opt/rh/devtoolset-2/root/usr/bin' > ~/.bashrc

zmq

To get zmq | had to add the EPEL package repo to install libsodium. Then the included repos for
yum had a version of zmq, but it was too old (need version >= 4.0). | cloned the repository,
compiled zmq and installed it.

cd ~/Packages

sudo yum install libsodium-devel

git clone https://github.com/zeromg/libzmg
make && make install

boost

Once again, yum has a version of boost, but it is too old to accomodate all the code here. We need
to get a newer version. | downloaded a tarball of the latest stable version and untared it into
~/Packages

cd ~/Packages/boost
./bootstrap.sh
./b2 install

fid-analysis

This is a small library that | wrote for simulating and analyzing FIDs.

cd ~/Packages
sudo yum install libfftw-devel libarmadillo-devel

git clone https://github.com/mwsmith2/fid-analysis

make && make install

include deps

Some of the worker classes depend on CAEN libraries, so we need to install as well.

sudo yum install libusb-1.0-devel wxGTK-devel
cd deps/CAENVMELib-2.41/1ib
sudo ./install 64

cd ../../CAENComm-1.2/1ib
sudo ./install 64
cd ../../CAENDigitizer 2.4
sudo ./install 64

nmr-core

Now we should be ready to compile nmr-core itself (including libuwlab.a). Just before you install
make the directory /usr/local/opt if it doesn't exist.

NMR front-ends

This one should be easy by now.

sudo yum install sglite-devel unixODBC-devel

make

If the front-ends don't compile let me know (mwsmith2@uw.edu), so | can fix this guide.

Basic Tutorial

Once you've gotten all the dependencies sorted out. We are ready to set up the experiment, and
start taking some data. One could look at the next section and set up the experiment layout, but
the simplest thing to do is to clone the layout from the one I've set up on github.

cd ~/Applications

git clone https://github.com/uwmuonlab/gm2-nmr-daq gm2-nmr

Renaming it to gm2-nmr isn't strictly necessary, but I've gotten used to using that as the experiment
base directory.

Configuring the Experiment

The next thing to do is set up the MIDAS exptab. The exptab is located at /etc/exptab, and all that
needs to be added is one line for the experiment. It should be structured as <expt-name>

<expt-dir> <ext-user>. For example mine for gm2-nmr looks like

#/etc/exptab

gm2-nmr /home/newg2/Applications/gm2-nmr/resources newg2

simple-dag /home/newg2/Applications/simple-dag/resources newg?2

The next thing to do is set up the experiment configuration in common/ . expt-env. This file is not
tracked by the repository, so you'll need to copy the one from common/examples/expt-env to
common/ .expt-env. The file is a list of frontends and MIDAS utilities to run when the DAQ is started.
It's used by all the scripts in online/bin/ which are scripts perform daq start/kill control. Some of
the variables here may need to be revised like the EXPT_IP to reflect the actual setup where things
are being installed.

The ODB needs to be initialized as well. I'd recommend making it a little bigger than the default, so
that it doesn't become a problem later. Try the following command, odbedit -e gm2-nmr -s
50000000, to create a 50MB ODB. After we create the ODB we need to configure some variables in
the ODB. The easiest way to do this is using the mhelper utility that I've been writing. To install it do:

cd common/code/mhelper

sudo python setup.py install

With mhelper installed you can add all the ODB variables in a json file (see
common/examples/add_to_odb.json) with mhelper add-to-odb <path-to-json-file>.

We also need to set up the data directory. | usually create the directory in /home/data/midas// then
link it to the resource directory, 1n -s /home/data/midas/gm2-nmr

~/Applications/gm2-nmr/resources/data.
Now let's build the frontends.

TODO - Uninstall gm2-nmr and reinstall from guide.

Experiment Layout

The DAQ structure is based on previous MIDAS experiments with a few tweaks to the in the mix.
One of the reasons for the restructure is to facilitate version control of the entire experiment
directory.

Folder Structure

| put these into ~/aApplications/<expt-name> but they can really go anywhere. * online * offline *
common * resources

online

This folder is generally for utilities that are associated with the DAQ during the data taking process
and run control. Mine contains the 3 folders * bin - filled with start/stop scripts * frontends -
contains code + executable MIDAS front-ends * www - contains html pages that will be linked to in
the ODB

offline

This is for manipulation of data offline. It hasn't been used much yet, so it's not a immature design.
* studies

common

The directory for things used by analyzers. * .expt-env - important, experiment specific variables *
config - directory filled with config files used by the DAQ * analyzers - used both online/offline so it
lives here and gets symlinked * scripts - utility scripts for things like resetting the ODB

resources

A directory containing all the binary data. This is the only folder that does not go under version
control (although git-Ifs could change that for some of the data, like odb). This directory also
contains all the MIDAS SHM chunks. * data * elog * history * log * backups

Important Files
/etc/exptab

MIDAS needs to know about the experiment, so define it here with a line like <expt-name>
<expt-dir> <expt-user> for instance my experiment current has gm2-nmr
/home/newg2/Applications/gm2-nmr/resources newg2 simple-dag

/home/newg2/Applications/simple-daqg/resources newg2

.expt-env

Contains lots of experiment specific environment variables, for instance:
#!/bin/bash
Store some useful experiment specific variables that are used by

scripts in one place

export EXPT='gm2-nmr'
export EXPT IP='nmr-daq'

export EXPT DIR='/home/newg2/Applications/gm2-nmr'
export MSERVER PORT='7070"'

export MHTTPD PORT='8080"'

export ROODY PORT='9090"'

export EXT IP=(
)

export MIDAS UTIL=(
'mserver'
'mhttpd’
'mlogger'

'mevb'

export EXPT FE=(
'shim trigger'

'shim platform'’

'laser tracker'
'mscb fe'

export EXPT AN=(
)

end script

