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1 Introduction 
The purpose of this document is to give a brief comparison of the three LEM so-
lutions that have been proposed, worked on since early 2015, and demonstrated 
to some degree. In this document, each solution will be referred to as a demon-
stration system.  The three demonstration systems are: (1) Spark, (2) Aerospyke, 
and (3) MPI. Section 7 provides two views for comparing features of the demon-
stration systems. This document will also provide an overview and status of the 
MPI demonstration system. 
The Spark and Aerospyke systems utilize available Big Data technology to ad-
dress the LEM question.  The MPI system uses standard HPC technology to 
address it.  The MPI system exists to form what I would a baseline solution so 
that the question of how much better is Big Data technology than a system con-
structed using well-established hand-coded distributed applications practices. 
MPI provides the facilities for quickly building the distributed application.  The 
MPI system employs Big Data techniques: dataset held in a large distributed 
memory with the calculation active where the data is.  It implements the algorithm 
using a variation of map-reduce, available through MPI primitive operations.  The 
MPI system will also provide a data for calculating a total cost to build, deploy, 
and operate the final production system.  All the underlying toolkits and libraries 
used in the creation of the MPI system are already supported by FNAL SCD, 
which makes estimating total cost straightforward. 
The limitations of LEM as a Big Data problem were acknowledged from the be-
ginning of the project. The expression of the analysis (the calculation) is fixed i.e. 
the question asked of the dataset is always the same.  The dataset being pro-
cessed is secondary: it is a fixed library used by the primary data stream being 
processed.  There is no variety across analysis queries made to this system: all 
multi-user queries are the same. 
There are known deficiencies in the dataset that we have to work with. It is 77M 
events with particle type distributions that match reality, but not what is needed 
for the LEM library. Production of the full LEM dataset with uniform particle distri-
butions has not been started. 
The current ROOT-based LEM algorithm that is used in the production system 
was never made available in a test system. This test system is necessary to veri-
fy that algorithm implementations and system operations in the demonstration 
systems are giving correct answers.  It is also needed to have a standard per-
formance number to compare with.  
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2 Current status 
Section 8 shows the configuration of the MPI demonstration system. The code 
for this system is in a redmine repository1 under the cpp directory. The 77M 
event JSON dataset spread over 200 files was pulled from the NOvA cluster and 
converted into a condensed custom binary format and placed onto cluck.fnal.gov. 
There are a number of utilities in the cpp directory for approximately event dis-
tributing of the 200 files to the five grunt nodes. Each grunt has 40 files of 
approximately the same total size. The main2.cc file contains the application in 
its current state.  The program will automatically calculate which files must be 
opened by each MPI process based on rank and node.  Each MPI process reads 
all the event data into memory and creates a sorted index by number of hits and 
metadata attribute theta1.  These steps are shown in the diagram below above 
“initialize”.  
As depicted in the diagram, a head node broadcasts on an event to be matched. 
Each process does not examine its entire dataset; it reduces the range by look-
ing at the number of hits and the theta1 attribute.  The program produces 
histograms of number of hits and theta1. These histograms were being used to 
determine reasonable range sizes. 
The LEM algorithm from the lembigdata/python area was recoded in C++ using 
the Armadillo library.  This code is available in the cpp directory.  It is not inte-
grated into the processing stream of main2.cc.  

3 What needs to be completed? 

4 What R&D activities need to be completed for the LEM 
problem? 

NA. 

5 How does the MPI application compare with the other 
solutions? 

NA. 

6 How does this fit into the bigger Big Data picture? 
NA.  

                                            
 
1 ssh://p-lembigdata@cdcvs.fnal.gov/cvs/projects/lembigdata 
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7 View of ongoing work 
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8 View of MPI test system 
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9 Original system view 
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