

- 1 -

Big Data Status (Draft)

Jim Kowalkowski

1 Introduction
The purpose of this document is to give a brief comparison of the three LEM so-
lutions that have been proposed, worked on since early 2015, and demonstrated
to some degree. In this document, each solution will be referred to as a demon-
stration system. The three demonstration systems are: (1) Spark, (2) Aerospyke,
and (3) MPI. Section 7 provides two views for comparing features of the demon-
stration systems. This document will also provide an overview and status of the
MPI demonstration system.
The Spark and Aerospyke systems utilize available Big Data technology to ad-
dress the LEM question. The MPI system uses standard HPC technology to
address it. The MPI system exists to form what I would a baseline solution so
that the question of how much better is Big Data technology than a system con-
structed using well-established hand-coded distributed applications practices.
MPI provides the facilities for quickly building the distributed application. The
MPI system employs Big Data techniques: dataset held in a large distributed
memory with the calculation active where the data is. It implements the algorithm
using a variation of map-reduce, available through MPI primitive operations. The
MPI system will also provide a data for calculating a total cost to build, deploy,
and operate the final production system. All the underlying toolkits and libraries
used in the creation of the MPI system are already supported by FNAL SCD,
which makes estimating total cost straightforward.
The limitations of LEM as a Big Data problem were acknowledged from the be-
ginning of the project. The expression of the analysis (the calculation) is fixed i.e.
the question asked of the dataset is always the same. The dataset being pro-
cessed is secondary: it is a fixed library used by the primary data stream being
processed. There is no variety across analysis queries made to this system: all
multi-user queries are the same.
There are known deficiencies in the dataset that we have to work with. It is 77M
events with particle type distributions that match reality, but not what is needed
for the LEM library. Production of the full LEM dataset with uniform particle distri-
butions has not been started.
The current ROOT-based LEM algorithm that is used in the production system
was never made available in a test system. This test system is necessary to veri-
fy that algorithm implementations and system operations in the demonstration
systems are giving correct answers. It is also needed to have a standard per-
formance number to compare with.

- 2 -

2 Current status
Section 8 shows the configuration of the MPI demonstration system. The code
for this system is in a redmine repository1 under the cpp directory. The 77M
event JSON dataset spread over 200 files was pulled from the NOvA cluster and
converted into a condensed custom binary format and placed onto cluck.fnal.gov.
There are a number of utilities in the cpp directory for approximately event dis-
tributing of the 200 files to the five grunt nodes. Each grunt has 40 files of
approximately the same total size. The main2.cc file contains the application in
its current state. The program will automatically calculate which files must be
opened by each MPI process based on rank and node. Each MPI process reads
all the event data into memory and creates a sorted index by number of hits and
metadata attribute theta1. These steps are shown in the diagram below above
“initialize”.
As depicted in the diagram, a head node broadcasts on an event to be matched.
Each process does not examine its entire dataset; it reduces the range by look-
ing at the number of hits and the theta1 attribute. The program produces
histograms of number of hits and theta1. These histograms were being used to
determine reasonable range sizes.
The LEM algorithm from the lembigdata/python area was recoded in C++ using
the Armadillo library. This code is available in the cpp directory. It is not inte-
grated into the processing stream of main2.cc.

3 What needs to be completed?

4 What R&D activities need to be completed for the LEM
problem?

NA.

5 How does the MPI application compare with the other
solutions?

NA.

6 How does this fit into the bigger Big Data picture?
NA.

1 ssh://p-lembigdata@cdcvs.fnal.gov/cvs/projects/lembigdata

- 3 -

7 View of ongoing work

Common fea-
tures

Spark Aerospyke MPI

Distributed cal-
culation

Spark map-reduce Client application MPI application

Locate / query
events

Spark / Java Client application MPI application

Filter Spark / Java Postgres MPI application

Map into memory Spark system Aerospyke MPI application

Storage HDFS Aerospyke / post-
gres

Binary files

JSON files
200 metadata

200 event
art / ROOT files
200 metadata

200 event

NOvA simulation
(art / GENIE /

Geant4)

~75M events total

CouchBase
instance on

grunts.
Load of

metadata
and partial
load of hit

data

Saba
Spark

JBK
MPI

Igor / Jin
Aerospyke

Spark memory
cache

Aerospyke
memory

Application data
structure in memory

HDFS

Binary FilesAerospyke
Hits

Postgres
MetadataModified JSON

Server-side Client-side Server-side

Calculation
expressed using

Map-Reduce
Functions coded

Spark-Java /
Scala with data

frames

Selection from
metadata values,

10K events
selected from

store, calculation
in art user
application

Scatter event to
match to cluster,

calculate on
range of events

based on
metadata

Storage

Caching

Filtering,
Selection,

Calculations

Analysis
location

- 4 -

8 View of MPI test system

Grunt5
Grunt4

Grunt3
Grunt2

Grunt1

CluckNOvA nodes

MPI test system

JSON files
200 metadata

200 event

art / ROOT files
200 metadata

200 event

NOvA
simulation

Binary files
200 metadata

200 event

Binary
converter

Binary files
40 metadata

40 event

Order and
copy

~75M events

core-N
core-1

Rank Assignment
(core within node)

Load my subset of
template events

into memory

Order by metadata
values theta1 &

nhits

receive broadcast
event-to-match

find range of
template events to

match against using
metadata

run LEM on range

sort by best 10K
results

all-reduce to merge
results from me to
find overall best

Initialize Run

if rank0, get event
and broadcast

if rank0,
report
results

- 5 -

9 Original system view

Sample events
in art ROOT

file

NOvA
Simulation
(using art)

Data extractor
(using art)

Sample Events
in JSON

exchange file

Data/Index
Loader

NOvA art Reco
process

using graph
expressions

NOvA art Reco
process

using cuts and
algorithms

Select sample_id where
energy<curr.event.energy+5.

and energy>
curr.event.energy-5.

 and …
Return set of

sample_id

Select sample_id,
type, quality

where
match(curr.event.

params)>.95

Return set of
sample_id,

type, quality of
match

En
co

di
ng

an

d
lo

ad
in

g

Pr
oc

es
se

s
on

 G
RI

D
m

ak
in

g
hu

nd
re

ds
 o

f
m

at
ch

 re
qu

es
ts

 p
er

se

co
nd

detector data detector data

NoSql DB
event data
and Index
storage

Da
ta

 g
en

er
at

io
n

Cut-based
Analysis

application

Graph analytics
engine

Bi
g

Da
ta

 S
ys

te
m

So
lu

tio
n

#1

So
lu

tio
n

#2

