
Requirements v2 and v3 for the LArSoft CI system

Eric Church, Igor Mandrichenko, Marc Mengel, Andrew Norman,
Vladimir Podstavkov, Ruth Pordes, Erica Snider

17-Feb-2015
Revision 3

Abstract

The LArSoft v1 CI system is deployed on a Jenkins server at Fermilab. With each trigger, a
workflow runs successfully and presents valuable information as to the state of the most recent
build of the LArSoft code. There are, nevertheless, features still missing or which are desired for
a fuller more robust system. We express below changes as needed or desired for each of
version 2 and 3 of the LArSoft CI system.

This document expands on the v0-v1 requirements found at
https://cdcvs.fnal.gov/redmine/documents/775. We leave introduction to the nomenclature to
that document and further documentation of the current implementation to
https://cdcvs.fnal.gov/redmine/projects/lar-ci/wiki.

1. State of v1

The LArSoft CI system largely implemented by Marc Mengel is up and running at
http://dbweb4.fnal.gov:8080/LarCI/app/view_builds/index. As of today it builds on two
architectures: SLF5 and SLF6.

1.1. The v2 system requirements shall meet all v1 requirements, and shall correct any
deficiencies of compliance of the v1 system with those requirements. Currently know
deficiencies include the following

1.1.1. There shall be a command that examines active branches with a working area
and triggers a build using those branches of the respective repositories

1.1.2. Real-time monitoring showing the progress of test execution. The display of
information wi

2. v2 features: Required

2.1. Documentation on the wiki of unit and CI tests currently running.

Currently, the tests are pretty self-describing, but it would not be out of order to have a
few sentences of documentation for each unit test or CI suite that runs.

2.2. Need alerting upon failure

Right now the CI tests fail silently. It is suggested that a failure report should be emailed
to the MicroBooNE analysis tools conveners and designated LBNE-35ton developers.
This list should be expanded to include the appropriate LAr1ND and Lariat offline
people, and other individuals as specified by any of the partner experiments, when their
unit and CI tests are running.

See related optional requirements in the next section.

2.3. Some aesthetic GUI features should be added to the reporting website

2.3.1. It seems to be true that when many triggers launch at once the platforms don’t all
report consistently and the columns of the reporting page don’t align.

2.3.2. Generally, one could lay out the page more nicely, with better separation among
the current builds and older ones. The green dots indicating success of stages of
the workflow should be larger. Text reporting failure/success should be highly
visible, clear and succinct.

2.3.3. One would like actual data points on the Google time-series strip-charts
2.3.4. One would like to be able to click on particular builds (data points) on any of the

time-series strip-charts and be taken to the log for that build.
2.3.5. Real-time monitoring of test progress shown in the display shall be limited to the

following:
2.3.5.1. An indicator for each test that has completed, with the pass / fail test

result as indicated above. A short explanatory message shall accompany any
test failed indicator

2.3.5.2. An indicator for each test that is currently running
2.3.5.3. An indicator for each test that has not yet run
2.3.5.4. An indicator for each test that has been skipped. A short explanatory

message for skipping the test shall accompany any skipped test indicator
2.3.5.5. The link published on the Jenkins server on the web page for a build

providing direct access to the current state of the log file for the CI job.

2.4. Someone must be responsible for watching the top-level reporting page and
watching for failures.

In addition to the automated alarming coming from the Jenkins system or our workflow
script, it is inevitable that things may look weird in an unanticipated way on the top
website and a developer will need to drill down to find out what’s wrong, and fix it or
email the responsible party to fix the problem.

2.5. It shall be possible to configure a test such that it will execute regardless of the

success or failure of previous tests in the test workflow to which it belongs.

2.6. The reporting system shall list all tests that were skipped due to the failure of a

previous test in a given test workflow, and provide simple and obvious visual cues at all
relevant levels that indicate that the test was skipped as opposed to having passed, or
failed.

2.7. There shall be a mechanism that will use the CI system to generate a new set of

reference data without creating test failures, which could terminate test workflows.

One anticipated problem is that the new data products to appear in larsoft v04_00_00
around, say, 9-Feb-2015 will break all the tests which compare current build to previous
build or which try to read up an old file and process it. Many CI tests will need to be
revisited at that time.

2.8. Currently we allow two simultaneous triggers per build, as configured by the Jenkins
managers. This allows two builds per platform as triggered by two nearly simultaneous
(greater than the current 5m sleep time) triggers. This should probably be expanded to,
say, 4 or 5 allowed simultaneous builds, as check-ins to the larsoft repos become more
frequent. The web page needs first to be demonstrated to be able to handle this — see
above point (1) under GUI changes.

2.9. User authentication: the system shall assume that any user with a KCA certificate is
authorized to initiate CI jobs and, if appropriate, write to the CI DB

2.9.1. In general, jobs run in stand-alone mode shall not write to the CI DB

2.10. Documentation aimed at the following audiences

2.10.1. Code developers using the system to monitor software changes
2.10.2. CI test developers
2.10.3. CI system administrators

This documentation shall be updated with each new release of the system prior to
deployment.

3. v2 features: Desired

3.1. Alerting on failure, optional requirement
In addition to alerting a fixed list of people for each failure as specified above, it shall be
possible to generate a target the list of code authors in the triggering commit, or a set of

people defined by the particular repositories or packages that were changed by the
triggering commit. The two options here are severable.

3.2. We need the Jenkins worfkflow to run on OSX-Mavericks and Yosemite slave
nodes. We can probably drop the SLF5 build in the near future. (We think LBNE still
relies upon it at some low level now, and so can’t drop it yet.)

3.3. The development model on the workflow side has not been exercised by people
beyond the core CI team. The core team has access to the lar-ci git repo, and so it is
easy to change the workflow.cfg file and push to change which code gets built, e.g.,
upon receipt of a trigger. This is not do-able for people outside the core team. A new
mechanism for changing this list should be investigated, without having to push to the
lar-ci repo. Even for those who have access to the git repo, it is clumsy that one must
force the tagging of this repo with the tag which is in current use by Jenkins. We have
at least once inadvertently placed that tag in the wrong place via forcing and thus picked
up the entirely wrong code for the workflow.

3.4. Currently we allow two simultaneous triggers per build, as configured by the

Jenkins managers. This allows two builds per platform as triggered by two nearly
simultaneous (greater than the current 5m sleep time) triggers. This should probably be
expanded to, say, 4 or 5 allowed simultaneous builds, as check-ins to the larsoft repos
become more frequent. The web page needs first to be demonstrated to be able to
handle this — see above point (1) under GUI changes.

3.5. The GUI shall provide a graphical indicator showing the expected run time for a

test and the current run time. The expected run time shall be estimated from previous
runs of the particular test. The indicator shall clearly distinguish when tests are within
the expected run time, when they are slightly over the expected run time, and when the
run time exceeds the expected run time by a significant factor.

4. v3 features: Desired

4.1. On the reporting side, only Marc has made changes of consequence. One
reason is that though the core CI team has access to the lar-ci-reporting git repo, the
procedure for making changes there and testing before pushing is not straightforward.
For one thing, one must be on a machine with django 1.4, not later. This is because
django 1.5 and beyond deprecates and removes the execute_manager, which is
currently used heavily in the django interface to the reporting db. In principle, upon
running django 1.4 one may then get a local apache instance up and test the reporting
db and make changes to the website http://localhost:8000/. Marc has provided these
instructions, though it doesn’t quite yet work for me. There is a connection to rexdb that
seems to not succeed. It would be nice if a LArSoft developer could more easily
exercise the code in the reporting and website lar-ci-reporting repo.

4.2. CMS-like relMon monitoring

The only quantitative data comparisons we have now in the CI tests are Kolmogorov-
Smirnov tests between specific histograms: the hits in 3 separate planes. The tests are
run between the latest build’s histograms and those from a build from a previous tagged
release. N pairs of histograms can be specified; we’re using 3 for this test. All
histograms are shown on the resulting CI page along with the KS score. When N grows
to be large one can imagine that it is not feasible to show all plots, but to aggregate the
results in some way. One can also imagine that rather than running K-S tests, chi2 tests
can be run, etc.

CMS’s relMon https://twiki.cern.ch/twiki/bin/view/CMSPublic/RelMon describes a fuller
suite of tests that is run on CMS releases. Example output sits at, say, http://cms-
service-reldqm.web.cern.ch/cms-service-
reldqm/ReleaseMonitoring/CMSSW_6_2_0_SLHC7VSCMSSW_6_2_0_SLHC1/FullSim
Report_UPG2017/, which is a nice bar/pie chart summary of consistency of histograms
aggregated within subsystems of the detector. Green in each pie chart shows what
fraction of many pair-wise chi2 p values come in above some low threshold like 1E-05.

So, for our CI system this may amount to an organization of our existing K-S testing
when applied to many more histograms than currently used in CI tests.

4.3. The reporting DB holds information that we think is satisfactory. Nevertheless, it’s
been suggested that rather than grep’ing out the needed quantities from the logs of the
various stages of the workflow as we do now, that instead the full logfile be held as a
blob in the DB.

4.4. Security: re-assess the v2 authorization requirement for v3.

4.5. Back-up: we should back up the DB weekly at first. Each backup should be kept
for six months.

