
DRAFT
Requirements for Production 
Management Database!
Michael Diesburg!
Robert Illingworth!
Andrew Norman!
!
9 January 2015!

Scope!
The scope of this system is to allow the Production Group to manage and monitor their data and 
MC processing jobs, and for the experiments to request processing tasks and MC event 
generation. Non-production jobs from experiment users are explicitly excluded.!

Task Workflow!
A “task” is a discrete processing task, for example “process a single day’s raw data”, or 
“generate 10000 Monte-Carlo events for this decay process”. A task may consist of one or more 
subtasks. A single subtask may be split into multiple batch jobs.!

The system needs to trace the workflow of tasks from creation to completion.!

Each task needs to store identifying information about who or what created it, the type of task 
(Reco, MC, Calib, etc).!

The subtask contains the information about the specific processing application and how to run 
the job. The latter should be sufficient to fully reproduce the task at a later date, so needs to 
include code release versions, input datasets, and, for MC, generator data, random seeds, etc. 
Since some of this data is likely to be experiment specific there needs to be a generic method of 
storing and retrieving arbitrary values.!

Within a task there is a dependency between the subtasks - the next subtask should not be run 
until the previous dependencies have been completed. The dependency handling should be 
able to manage arbitrary DAGs.!

There should be a defined set of allowed states for tasks and subtasks, and there should be a 
record of each state change which includes the timestamp and the reason for the change.!

For running subtasks information should be stored on the individual batch jobs - the facility, job 
ID, etc. It would also be useful to keep track of the ongoing state of the job - the stage it has 
reached (staging data files, processing, transferring output, etc).!

�1



DRAFT
The system needs a method for determining if a task is completed. There may be more than 
one way of doing this (for example, producing the requested number of events for MC requests, 
or consuming all the input files for production tasks), so there should be a flexible interface for 
this.!

Job submission!
Jobs should be automatically submitted by pulling the next task from the queue and submitting 
the required number of jobs. There should be a common tool for doing this, but since each 
experiment has specific requirements it needs to be sufficiently modular to handle these. The 
submission tool needs to be able to limit the number of batch jobs submissions in order to avoid 
overwhelming the queues.!

�2

State transitions for a task with a single subtask

Subtask

new

pending approval

approved rejected

pending

submitted

Batch job 
submission

running

wait for 
completion

Resubmit 
failed jobs

finished failed

Give up

completed



DRAFT
Submitting to offsite or opportunistic resources should be the responsibility of Jobsub, so the 
system has to be able to pass through suitable site selection criteria.!

There should be provision for resubmitting only the failed parts of incomplete tasks.!

Job stage tracking!
Each individual batch job consists of multiple stages (for example: copying input files; unpacking 
tarball; executing framework program; copying output files). The progress through the stages 
should be tracked and resource usage recorded for each stage. Since the system needs to 
handle a wide variety of job types the list of available stages should be flexible and open-ended.!

Monte-Carlo requests!
Monte-Carlo tasks should only be run after being approved by an authorized member of the 
experiment. This allows for a model where requests for MC are created by individuals or groups 
within the experiment, but a limited number of authorized people prioritize the work.!

User interface!
There should be a web interface, a command line interface, and a scriptable interface to the 
system. The former should provide monitoring information as well as management tasks. 
Management tasks should be restricted to authorized users using a suitable Grid compatible 
authentication method.!

An example of an application using the scriptable interface would be a script that creates the 
processing chain for a day’s worth of new data. It needs to create any required SAM definitions,!

Relationship to other systems!
The system needs to interoperate with the SAM file catalogue and Jobsub for the batch 
submissions.!

The Task ID and (if applicable) SAM process ID should be stored in the SAM metadata for each 
output file. This will allow listing the files created by a given task, and also make it possible to 
trace back to the task information from a particular file. !

Parameters to track!
The following list the parameters that are stored for each data type.!

Tasks!
Task ID!
Experiment!

�3



DRAFT
Sub-task ID!
Experiment!
Creator details (username, physics group, or similar)!
Type of job (MC, Reco, etc)!
Priority!
Comment or description (freeform human readable text field)!

Subtasks!
Task ID!
Subtask ID!
Input dataset (SAM dataset definition or snapshot)!
Generic job parameters (blob or semi-structured data interpreted by the jobs)!

States!
Timestamp!
Transition (old -> new)!
Reason!
User!

Jobs!
Job ID!
State!
Batch job ID!
SAM process ID!

Job stage history!
Job ID!
Timestamp!
Processing stage (file staging, processing, copy back results, etc)!
Information about the batch job - CPU time, wall time, etc

�4


