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Lecture 9

More Background for Accelerator
Simulation Techniques plus CHEF
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The Reference Particle

Even using z as the independent variable, tracking particles around an
accelerator’s design trajectory using global coordinates is excessively
cumbersome.

Tracking becomes dramatically simpler when expressed in terms of
differences from the trajectory of a hypothetical reference particle.
We express all particle coordinates in this way, including the reference
particle itself, which tends to have zeros for coordinates.
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Transfer Maps

We can consider the action of the Hamiltonian on the particles as
(generally nonlinear) mapping M which takes the six-dimensional
phase space coordinates from P in to Pout :

Pout =MP in

A very special case is the linear map M which essentially reduces the
problem to linear optics.

One easily accessible result is that stability of a lattice requires

detM = 1.

Another useful case is an nth order polynomial in the coordinates. We
call that a polynomial (or sometimes ”higher-order”) map.
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Symplectic Matrices

(Again, this is lifted from Ryne.)
Let M denote a 2m × 2m matrix. Let J denote the 2m × 2m matrix given
by.

J =


J1 0 0 0
0 J1 0 0

0 0
. . . 0

0 0 0 J1

 ,

where J1 is the 2× 2 matrix given by

J1 =

(
0 1
−1 0

)
.

The matrix M is said to be a symplectic matrix if it satisfies

M̃JM = J.
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Symplectic Matrices (2)

Symplectic matrices have several important properties that we state here:

1 detM = 1.

2 The eigenvalues of M are real or they occur in complex conjugate
pairs.

3 If λ is an eigenvalue of M, then so is 1/λ.

4 The real dimensionality of M (i.e. the number of real parameters
necessary to specify an arbitrary 2m × 2m symplectic matrix) is
m(2m + 1).

5 The set of 2m × 2m symplectic matrices forms a group, Sp(2m).
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CHEF

As we have seen, Synergia uses the CHEF libraries to do independent
particle tracking.

Internally, CHEF tracks particles according to element propagators.
These propagators are programmable.

The default propagator for most elements consists of a series of
empty spaces and thin element kicks, constructed to be symplectic.

CHEF can do internal symbolic manipulations to extract what
amounts to a multi-dimensional Taylor series expansion of a

mapping.

Linear mappings extracted that way are always symplectic.

Higher-order mappings are generally *not* symplectic, but it is
possible to symplectify them.
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CHEF Units

Every simulation package uses some sort of scaled system of units.
Synergia uses CHEF’s system.
(Below, ptotalref is the total momentum of the reference particle, in GeV/c)

In the fixed-z representation:

x : [meters]
y : [meters]
cdt : c∆t [meters]

xp : px
ptotalref

[unitless]

yp :
py

ptotalref

[unitless]

dpop : ∆ptotal

ptotalref

[unitless]

In the fixed-t representation:

x : [meters]
y : [meters]
z : [meters]

xp : px
ptotalref

[unitless]

yp :
py

ptotalref

[unitless]

zp : pz
ptotalref

[unitless]
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Higher-order Symplectic Methods

Higher-order Symplectic Methods
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The Method of Yoshida

H. Yoshida, Phys. Lett. A 150, p. 262 (1990).
Suppose we have a Hamiltonian that can be split into two parts,

H = H1 +H2,

and that the differential operators that drive the time evolution of H1 and
H2 are A and B, respectively. Definining z = (q, p), we have

z(τ) = exp [τ(A + B)] z(0).

We seek a set of ci and di such that

exp [τ(A + B)] =
k∏

i=1

exp(ciτA) exp(diτB) +O(τn+1)

. It is easy to find solutions at first order,

c1 = d1 = 1,

and second order,

c1 = c2 =
1

2
, d1 = 1, d2 = 0.

Yoshida showed that you could use these solutions in symmetric products
to recursively generate arbitrary-order methods.
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Yoshida, continued

At fourth order, his method produces

c1 = c4 =
1

2(2− 21/3)

c2 = c3 =
1− 21/3

2(2− 21/3)

d1 = d3 =
1

2− 21/3

d2 = − 21/3

2− 21/3

d4 = 0

The sign of d2 seems weird if you ascribe some physical meaning to the
intermediate stages of a time step. Don’t do that.
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Yoshida, yada yada

Explicitly,

exp [τ(A + B)] = exp(c1τA) exp(d1τB) exp(c2τA) exp(d2τB)×

exp(c3τA) exp(d3τB) exp(c4τA) +O(τ5).
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Assignment 4

Calculate the horizontal and vertical tunes in the foborodobo32
lattice.

You can plot a track of a single turn and count the peaks to get a
rough estimate.
The tunesim.py script will help write a track at the appropriate places.
The tunecalc.py will show you how to read the track data and get the
FFT.

Determine the accuracy with which you can measure the tune.
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Assignment 5

Write your own version of independent-particle tracking for lattices
involving only drifts and quadrupoles.

There is a version that works for thin quadrupoles in thin fodo.py and
minisyn.py.

Add a 2nd order symplectic integrator for thick quadrupoles.

See how many steps it takes to get accurate results.

Add a 4th order symplectic integrator for thick quadrupoles.

See how many steps it takes to get accurate results.
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