

Tracking bunches of particles

● Periodic longitudinal boundary conditions
● Characterizing distributions

– moments

– correlation coefficients

– histograms

● Statistical definition of emittance
● Generating matched beams

– including longitudinally uniform beams

● Compensating for statistical artifacts

Periodic longitudinal boundary
conditions

Take a long periodic (or uniform) beam

Look at period n

n n+1n-1

Each particle leaving n corresponds to another particle entering
n from the other slide

n n+1n-1

Characterizing distributions

● If we are going to deal with large numbers of
particles, we need to have a set of observables
by which to characterize the distribution

● First moment (mean) <x
i
>

● Second moment C:
●

● Correlation coefficient R:

Cij ´ h(xi¡ < xi >)(xj¡ < xj >)i

Rij ´
Cijp
CiiCjj

● These quantities are both useful in simulations
and closely related to typical measuring devices

– Beam position monitors report <x
i
>

– Beam sizes are usually characterized by a width ~
sqrt(C

ii
)

● One-dimensional histograms are also useful
and similar to the output of beam profile
monitors.

● Of course, in the simulation we both have
access to and require information not readily
available in experiments.

characterizing, cont.

Statistical definition of emittance

●

– note that this can be 2D (horizontal, vertical or
longitudinal), 4D (transverse) or 6D (full phase
space)

● Confusion danger: different conventions
abound
– This is “one sigma” ~ 36%

– Unnormalized

● Numerical danger: taking determinants of even
modestly-sized matrices is numerically tricky.

² =
p
detCij

Generating matched beams

● Good news: real beams are usually well
modeled by a Gaussian distribution in each
coordinate
– Gaussians are easy to generate. See, e.g., NR.

● Bad news: real beams contain correlations
– Simplest case: 1D Courant-Snyder

–

– Beams with couplings between planes are much
more complicated.

Rxx0 =
®p
1 + ®2

Aside: random number generators

● Computing (pseudo-) random numbers is
difficult

● Canned routines can be bad
– e.g., Intel Fortran ca 2002 (I haven't checked it

lately)

● Ideally, you should always know which random
algorithm you are using.

● You must always know how your random seed
is being set.

Matching

● A matched beam has the same distribution after
each period (turn, etc.)

Given a set of constraints (widths, emittances, etc.),
the problem is then to solve for the a

i

Subtleties

● Will the given procedure always work?
– Only if the all degrees of freedom, including

longitudinal, are “matchable”
● i.e., stable RF

– If the procedure fails, the components E
i
 will fail to

span the space:

–

● What if we have a uniform longitudinal beam or
a bunching/debunching beam?
– One possibility: only match transversely

● Neglects to compensate for dispersion

det

ÃX

i

Ei

!
= 0

Special case: uniform longitudinal
beam

● If we are modeling a uniform longitudinal beam
with periodic boundary conditions, the map
does not tell the whole story.
– And if we are not using periodic boundary

conditions, the beam will not stay uniform!

– If the longitudinal coordinate is uniform, symmetry
prevents any couplings to other coordinates. All
couplings to the spatial longitudinal coordinate
(other than the self-coupling) should be set to zero
in the map for the purposes of matching.

Fixing the distribution

● It is easy to generate a set of uncorrelated
vectors {v} with Gaussian distribution with unit
widths:

● We want a set of vectors {r} with correlations
given by the C from our procedure.

● Solution:
● where
● GGT is the Cholesky decomposition of C

< vivj >= ±ij

rj = Gjkvk

C = GGT

Correcting for finite statistics

● In reality, our set of random vectors with have
statistical fluctuations. These fluctuations are
non-physical because we are typically using
n macroparticles << N physical particles

● If we have
● and
● then another Cholesky decomposition
● allows the solution
● with

< v >= ¹v

< vivj >= Xij

X = HHT

rj = Ajk(vk ¡ ¹v)
A = GH¡1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

