
  

Tracking bunches of particles

● Periodic longitudinal boundary conditions
● Characterizing distributions

– moments

– correlation coefficients

– histograms

● Statistical definition of emittance
● Generating matched beams

– including longitudinally uniform beams

● Compensating for statistical artifacts



  

Periodic longitudinal boundary 
conditions

Take a long periodic (or uniform) beam

Look at period n

n n+1n-1

Each particle leaving n corresponds to another particle entering
n from the other slide

n n+1n-1



  

Characterizing distributions

● If we are going to deal with large numbers of 
particles, we need to have a set of observables 
by which to characterize the distribution

● First moment (mean) <x
i
>

● Second moment C:
●

● Correlation coefficient R:

Cij ´ h(xi¡ < xi >)(xj¡ < xj >)i

Rij ´
Cijp
CiiCjj



  

● These quantities are both useful in simulations 
and closely related to typical measuring devices

– Beam position monitors report <x
i
>

– Beam sizes are usually characterized by a width ~ 
sqrt(C

ii
)

● One-dimensional histograms are also useful 
and similar to the output of beam profile 
monitors.

● Of course, in the simulation we both have 
access to and require information not readily 
available in experiments.

characterizing, cont.



  

Statistical definition of emittance

●

– note that this can be 2D (horizontal, vertical or 
longitudinal), 4D (transverse) or 6D (full phase 
space)

● Confusion danger: different conventions 
abound
– This is “one sigma” ~ 36%

– Unnormalized

● Numerical danger: taking determinants of even 
modestly-sized matrices is numerically tricky.

² =
p
detCij



  

Generating matched beams

● Good news: real beams are usually well 
modeled by a Gaussian distribution in each 
coordinate
– Gaussians are easy to generate. See, e.g., NR.

● Bad news: real beams contain correlations
– Simplest case: 1D Courant-Snyder

–

– Beams with couplings between planes are much 
more complicated.

Rxx0 =
®p
1 + ®2



  

Aside: random number generators

● Computing (pseudo-) random numbers is 
difficult

● Canned routines can be bad
– e.g., Intel Fortran ca 2002 (I haven't checked it 

lately)

● Ideally, you should always know which random 
algorithm you are using.

● You must always know how your random seed 
is being set.



  

Matching

● A matched beam has the same distribution after 
each period (turn, etc.)

Given a set of constraints (widths, emittances, etc.),
the problem is then to solve for the a

i



  

Subtleties

● Will the given procedure always work?
– Only if the all degrees of freedom, including 

longitudinal, are “matchable”
● i.e., stable RF

– If the procedure fails, the components E
i
 will fail to 

span the space: 

–

● What if we have a uniform longitudinal beam or 
a bunching/debunching beam?
– One possibility: only match transversely

● Neglects to compensate for dispersion

det

ÃX

i

Ei

!
= 0



  

Special case: uniform longitudinal 
beam

● If we are modeling a uniform longitudinal beam 
with periodic boundary conditions, the map 
does not tell the whole story.
– And if we are not using periodic boundary 

conditions, the beam will not stay uniform!

– If the longitudinal coordinate is uniform, symmetry 
prevents any couplings to other coordinates. All 
couplings to the spatial longitudinal coordinate 
(other than the self-coupling) should be set to zero 
in the map for the purposes of matching.



  

Fixing the distribution

● It is easy to generate a set of uncorrelated 
vectors {v} with Gaussian distribution with unit 
widths:

● We want a set of vectors {r} with correlations 
given by the C from our procedure.

● Solution:
● where
● GGT is the Cholesky decomposition of C

< vivj >= ±ij

rj = Gjkvk

C = GGT



  

Correcting for finite statistics

● In reality, our set of random vectors with have 
statistical fluctuations. These fluctuations are 
non-physical because we are typically using
n macroparticles << N physical particles

● If we have
● and
● then another Cholesky decomposition
● allows the solution
● with

< v >= ¹v

< vivj >= Xij

X = HHT

rj = Ajk(vk ¡ ¹v)
A = GH¡1
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