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Numerical Solution of ODEs
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General Method

Start with an n"-order set of coupled ODEs involving x and %.
Reduce to a set of first-order equations by introducing

_dx

=

to obtain an n — 1-order ODE in x coupled to a first-order equation in &.
Repeat until all equations are first-order.
Then, the general case is

y= f(Y? t)'

We want to integrate this set of equations for a total time T = t; — tp. To
do so, divide T into steps of size h.
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Euler Method

The simplest method is that of Euler.

y(t +h) =y(t) + hy(t).

In terms of steps,
yn+1 — yn + hyn
Taylor expand y(t + h),
h2
y(t+h) = y(t) + hy(t) + Z§(t + h) + O (h*),

to see that Euler is accurate up to terms of O(h).
We call Euler a first-order scheme.
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Higher o

If we stick with Euler we will need to make h very small, i.e., we will need
to take a large number of steps.

Once we start looking for higher-order methods, we find that there are
infinitely many at a given order.
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4th_order Runge-Kutta

4th_order Runge-Kutta is a favorite:

1
y =y + Z(a+2b+2c+d),

6
where
a= hf(y",t"),
a h
=hfly"+ - t"+ =
b (y +2,t +2>,
b h
=hf(y"+=,t"+ =
and

d=hf(y"+c,t"+h).

Note that this method requires four function evaluations.
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4t_order Ru nge-Kutta, continued

To see that this method is, indeed, accurate to 4 order in h, Taylor
expand

h2
y"h =y by
and use

d_0 dyo
dt Ot dtdy

0 0

= = +f—.

at oy

You can find this in “any book.”
There are many algorithms in common use. See the exercise.
Some of the more interesting methods make use of the Jacobian

%

Jj
Iy ayj
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Adaptive Step Sizes

Read Numerical Recipes
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Example: A non-relativistic particle in a uniform gravitational field in one
dimension.

d2x_ d2x_ g
a2 a2~ m
X Yo
= (3)-00)
where
Yo=y1
= e -
m

Finally we have the form we require:

a(n)=(2)
RN
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Example Code

Get the example code from the wiki:

ode_example.py
uniform accel.py
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@ (1) Rewrite the example for the simple harmonic oscillator

d?x
F = —kX,
using
k
K= —.
m

Put the new functions in a file sho.py. You should include the analytic
solution, but you may start with the initial condition y;(0) = 0.

@ (2) Try all the integrators in GSL. See how many steps and how much
time is required for each.

@ (3) Calculate the (scaled) energy for the SHO. Redo (2), including
the energy in the plots.
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