

NOA DCS Software Functional Requirements

[bookmark: _GoBack]Athans Hatzikoutelis

NOVA-doc-5946
(Last revised on 08/30/11)

Table of Contents
1	Introduction	3
1.1	Terminology	3
1.2	Scope	4
1.2.1	Workflow Partitioning	4
1.2.2	Product boundary.	5
1.3	Rationale	5
1.4	Actors	5
1.5	Overview	6
2	Functional Requirements (Use Cases)	7
2.1	Detector Control and Monitor	7
2.1.1	Control and monitor a process variable.	8
2.1.1.1	Read a process variable.	8
2.1.1.2	Control of a process variable.	8
2.1.2	Configure and control subsystem process variables.	9
2.1.2.1	Respond to DAQ calls.	10
2.1.3	Steady state monitoring	11
2.1.4	Active cooling of the APDs	12
2.1.4.1	Verify the FEB firmware	12
2.1.4.2	Enable the TECCs	13
2.2	Alarm Handling	14
2.2.1	Annunciation.	15
2.2.2	Send message to DAQ.	16
2.3	Logging (long term).	17
2.4	Visualization	18
2.4.1	Partitioning.	18
2.4.2	Annunciation for the shifters.	18
2.4.3	Set-command sections for the shifters.	19
2.4.4	Expert views and expert controls.	19
2.4.5	Illustration of monitoring use case.	19
2.4.6	Illustration of control use case.	20
3	Non-Functional Requirements	21
3.1	Performance Requirements	21
3.2	External Constraints	21
4	Appendices	22
4.1	Appendix 1. The main parameters monitored from the FEBs.	22
4.2	Appendix 2. Example of alarm states in the DCS.	24

[bookmark: _Toc228775797][bookmark: _Toc303185181]Introduction
This document lists the functional requirements for the DCS software in the NOA detector control system (DCS).
According to the initial conceptual design of DCS:
“The detector controls system is required to have access to over 11,600 physical devices roughly 370,000 independent programmable channels.
Controls interface must present a uniform method of accessing all the devices regardless of controls interface.
The system must be modular, scalable and support partitioning into production, installation, and calibration/commissioning variants to accommodate the “physics during build” model”.

[bookmark: _Toc303185182]Terminology
DCS : detector control system.
DCS application: the main software of DCS. A suite of executables/ services/ processes that use common Communication Framework libraries to perform the monitor and control.
FEB: front end board.
APD: Avalanche photo diodes.
DCM: data concentrator module.
CMI: Control and Monitor Interface. An arbitrary/ generic name for processes that reside on the nodes that host the hardware interfaces to the components of the various sub-systems. Examples: IOC Input/output controller, UDP simple server etc.
Control: set or write a value of a process variable.
Monitor: read the value on a process variable.
API: Application programming interface, another name for hardware interface.
Process variable: a general term for a the data type that is read from or written to a subsystem.
DAQ: the Data Acquisition suite of software. Here the general term DAQ is used for the process that is used to communicate with the DCS suite.
Communication: Signals or messages from the main DCS application to and from the CMI processes that reside on nodes that host the hardware interfaces with the components of the various sub-systems.
Local archiving: DCS application temporary storage.
Logging: Long term archiving to the NOvA dBase.
Alarm state: when the value of a monitored parameter goes out of decided limits.

[bookmark: _Toc303185183]Scope
The NOvA Detector Control System (DCS) is the main non-DAQ control and monitor of the detectors. The Functional Requirements documents describe the functionality required to read from and command the DCS subsystems and their components.
a) reading and setting parameters.
b) Alarm handling server.
c) Logging server.
d) Visualization service to users (GUI or OPI).
[bookmark: _Toc303185184]Workflow Partitioning
The DCS application has four distinct functions. Although it will use the same communication platform the workflow and therefore the requirements are somewhat different. The graphical representation of communication flow in the DCS is shown in Fig1.
The DCS system will also integrate with the primary DAQ. Part of the Alarm handling will be to emit signals to DAQ for a decision on run-interruption.
[image:]Integration with the primary database is done through the local Logging client which will save the full DCS data set to provide a history of channel states and alarm events.

Figure 1. Graphical representation of the relations among the constituent/ internal processes of the DCS application.

[bookmark: _Toc303185185]Product boundary.
There will not be any DCS involvement with the building running operations (security & temp control) or the computing hardware (wifi & sys.-admin).

[image:]
Figure 2 Graphical representation of the DCS scope boundary.

[bookmark: _Toc303185186]Rationale
The DCS will be the main control over the detector therefore it will be operational on the NOvA detectors regardless of any of the Run, Data-taking, Calibration, Commissioning or Installation activities.
The DCS will monitor and control devices in the various subsystems that have different hardware interfaces with different computer architectures. This has been a design decision before and outside the DCS R&D phase.

[bookmark: _Toc303185187]Actors
The applications and persons that will interact with the DCS include
· Monitoring and control application (DCS application).
· DAQ control (DAQ).
· Shifters (operators- through the Visualization Interface system).
· Alarm server (Alarmer).
· Archive sever (Archiver).

[bookmark: _Toc303185188]Overview
The DCS will control the detector and monitor its state. Through its operator interface it will turn on the power supplies and the water cooling independently of the DAQ. The DCS must maintain control of the detector at all times, even during the DAQ programming the FEBs (data taking and data run start-ups). The DCS application will communicate with CMI processes residing in the various subsystems. All the operations and communication of the DCS will be done without any external network access.

Table 1 shows the sub-systems under the control of the DCS with their ethernet capabilities.
	Ethernet Enabled
	Non-ethernet Enabled

	High Voltage PS (Caen SY1527)
	Environmental/ temp. sensors (RTD).

	Low voltage PS (Weiner PL508)
	Water pressure/flow

	FEB (thu their DCM)
	Mechanical stress/strain gauges.

	Remote power rack-protection circuit
	Rack monitoring (smoke & temp)

Figure 3 Graphical representation of the relations between the DCS and the hardware of the NOvA experiment. All flow paths are bi-directional here. The internal structure of DCS application is in fig.1, the various hosts and architectures in table1.

[bookmark: _Toc303185189]Functional Requirements (Use Cases)
[bookmark: _Toc228775800]
This section lists the use cases that span the functionality that is desired from the DCS application for the NOvA detectors.

[bookmark: _Toc303185190][bookmark: _Toc102813285]Detector Control and Monitor
The main objective of the DCS application is controling and monitoring of all the non-daq process-variable values. Refer to “Workflow Partitioning” for the various cases of communication that the DCS will have in its scope. This use case is the grouping of the “Reading Parameters” and “Set Parameters” since they are very similar actions. For this case it is a requirement that all the process variables must be at least readable. The constituents of this requirement are that:
a) Each host in the subsystems (of Table.1) must have an CMI process that can read the process variable values. For example it can read the local hardware interface on the host that connects to the hardware that reads a sensor or register.
b) The CMI must be able to exchange signals/messages with the DCS application.
[bookmark: _Toc303185191]Control and monitor a process variable.
[bookmark: _Toc303185192]Read a process variable.
The basic action of monitoring, which is performed by the DCS application, is to read a process variable. For example, getting the value on a sensor’s measurement, or the one from a register in the case of FEBs. This is a requirement for each of the channels on all the subsystems that the DCS is monitoring.
	Task
	Monitor a process variable.

	Goal
	Read the value in a process variable through the DCS application communication system.

	Actors
	DCS application

	Trigger
	A request for the value of the process variable.

	Preconditions
	All the hardware subsystems for the communication path to the node that hosts the hardware interface to the process variable must be powered up.

	Post-conditions
	The value is known to the DCS.

	Description
	1) Broadcast to the address of the process a request for its value.
2) The CMI that has the address in its scope uses the local hardware interface to read the value.
3) The CMI sends a message to the DCS application with the address and value of the process variable.

	Nonstandard Flow
	Non responding process variable: A timeout is generated and communicated to the Alarmer (see later).

	Comments
	The address of a process variable is equivalent to a unique name for its type of data and the hardware channel it represents.

[bookmark: _Toc303185193]Control of a process variable.
This action uses the same communication and hardware paths as the “read of a process variable” use-case. For example, writing into a control register for detector configuration. Each of the channels that have a control (or write or set etc) capability has a readback one as well. It will be used to verify the successful setting of the value.
	Task
	Control a process variable.

	Goal
	Write a value in a process variable.

	Actors
	DCS application

	Trigger
	A request for the process variable to have a certain value.

	Preconditions
	All the hardware subsystems for the communication path to the node that hosts the hardware interface to the process variable must be powered up.

	Post-conditions
	The new value is known to the DCS.

	Description
	1) Broadcast to the address of the process the value to be set.
2) The CMI that has the address in its scope uses the local hardware interface to set the value to the process.
3) The CMI uses the local hardware interface to read-back the value.
4) The CMI sends a message to the DCS application with the address and value of the process variable.

	Nonstandard Flow
	Non responding process variable: A timeout is generated and communicated to the Alarmer (see later).

	Comments
	The address of a process variable is equivalent to a unique name for its type of data and the hardware channel it represents.

[bookmark: _Toc303185194]Configure and control subsystem process variables.
This is the first action that the DCS application will be doing during the detector start-up. It is also for the rebooting of the detector system after some subsystem failure. The main requirements for this case are:
a) The DCS application must be able to connect to the database and request the latest configuration information (partitioning by-block, running mode-“cooled”, “warm”, “hi gain”, “low gain”, “standard”-, channel masks, HV adjustments per channel, etc.).
b) The DCS application must be able to read the format of the configuration file (XML, script, txt, etc.) and direct each parameter to the proper address on the proper subsystem.

	Task
	Configure the detector.

	Goal
	Configure the detector by setting the writable process variables.

	Actors
	DCS application, shift operator.

	Trigger
	Shift operator requests detector start-up or re-configure of the detector (in part or all).

	Preconditions
	All the hardware subsystems and the nodes that host the hardware interfaces must be powered up.

	Post-conditions
	The detector is configured and ready for operations.

	Description
	1) DCS application sends a request to the dBase for the configuration info.
2) A configuration file is re-created at that time from with all the recent parameter values.
3) A message is broadcasted to all CMIs with the values of the process variables that must be set.
4) The processes that have confirmation options will be readback.

	Nonstandard Flow
	A subsystem fails to respond: if a piece of hardware in the communication path of the DCS application to some process variables is not active there will be a timeout in the readback actions. This will not return a wrong/alarm-able value. The DCS application sends a message to DAQ program and the operator should find out, or already know why. Action: troubleshoot the hardware or put it in the mask (“do not configure” list) and run this case again with the updated configuration file.
A process that can confirm set value of its variable does not return in success. Action: Attempt to re-run this case from its beginning.

	Comments
	n/a

[bookmark: _Toc303185195]Respond to DAQ calls.
Before the DAQ starts a data run needs to know if the detector is at a state that a run can start. The only path it can use to know is by asking the DCS if the detector is configured. The main requirements for the DCS application in this use case are:
a) It must have a way to retain the state of the detector after its configuration.
b) It must have a way of receiving and sending messages to the DAQ.
	Task
	Respond to DAQ.

	Goal
	Receive the “is configured” call from the DAQ and respond to it appropriately.

	Actors
	DCS application, DAQ.

	Trigger
	A request from the DAQ of the state of the detector.

	Preconditions
	All the hardware subsystems for the communication path to the node that hosts the hardware interface to the process variable must be powered up.

	Post-conditions
	The detector is ready for operations.

	Description
	1) DAQ broadcasts a message to the DCS application requesting if the detector is in a configured state.
2) The DCS application checks if the configuration.
a. If a configuration is in progress it does not respond.
b. If it has completed succesfuly it sends a “is successfully configured” response to the DAQ.

	Nonstandard Flow
	n/a

	Comments
	The test of the messages between DCS and DAQ here are only indicative of the context.

[bookmark: _Toc303185196]Steady state monitoring
This is mainly readback procedure of the DCS application. The low level actions of reading process variable values and setting to the writable ones are the same for this case but it is a special one on its own since it will be the use case for the longest period of time during the routine operation of the detector.

	Task
	monitoring during data-run.

	Goal
	Continually poll the monitored process variables

	Actors
	DCS application

	Trigger
	Signal that a data or calibration run is to start for this case to start then a continuous loop of simple timed triggers.

	Preconditions
	All configuration processes must have ended successfully.
A masking is implemented for the various partitions.
The active cooling has been started.
Cooling has stabilized on all APDs that are in the mask.

	Post-conditions
	The operational parameters are archived.

	Description
	1. Read the FEB registers that have been agreed to monitor at the steady state. (see the rows with a “V” check mark in the Table A.1).
2. Unpack the values and convert to the physics units according to the rules for each (the ones that require that).
3. Transmit the values to the main DCS app.
4. Archive all values locally.
5. Engage the Archiver facility for long-term storage.

	Nonstandard Flow
	One of the registers is not returning a value. Action: send message to DCS app. The shifter should investigate.
One of the registers is returning a zero (default) value. Action: send message to DCS app. The shifter should investigate.
One of the registers is not returning a value that is away from the baseline or the normal operational range. Action: send message to DCS app. Go to Alarm state.

	Comments
	The FEB registers will be read and archived locally at 1/5sec.
The other process variables at much lower frequencies as needed.
The Alarm states response will be determined by experience during tests.

[bookmark: _Toc303185197]Active cooling of the APDs
Active cooling is an important procedure that the DCS can perform and is the precondition for the data taking, critical for data quality and important for the offline establishing the baseline. The procedure was developed at the NDOS and this case is taking its requirements from that design.

[bookmark: _Toc303185198]Verify the FEB firmware
A specific test of the firmware version of the FEBs is needed right before the first data run, after a reboot or a DAQ-hardware scan is performed. If it returns failure for some FEB channels, the DCS app will try to reload the current firmware before it considers the FEB inoperable and send message to the DAQ for updating the operational database. The main requirement for this case is:
a) The DCS application must be able to receive command-messages issued on the operator interface within the Visualization facility.

	Task
	Verify the FEB firmware.

	Goal
	Verify that all FEBs have the latest firmware

	Actors
	DCS app

	Trigger
	Receive the “Begin Active Cooling” command from.

	Preconditions
	The detector is configured and ready for data taking or a previous check of the firmware returns an error status.

	Post-conditions
	All FEBs are configured properly.

	Description
	5) Check if this is the first or not try to load the FEB firmware in all channels (i.e. if any of the FEB have returned error).
6) Activate script that reloads the firmware to the FEBs that have error status returned.

	Nonstandard Flow
	Wrong version after running for 2 times: Send message to DAQ that the FEB is unrecoverable. Do not try to load firmware again.

	Comments
	This comes from the DCs meeting of 4/14/11

[bookmark: _Toc303185199]Enable the TECCs
In order for the regular data taking to start the APDs must be in an operational state. That is defined by the temperature they are set on. This choice is on the operators. Before the TECCs can set the temperature on the APD they must be started. That happens by enabling them. This happens before the APD voltage is applied that is only when the detector is about to start DCS monitoring.

	Task
	Enable the TECCs

	Goal
	Starting up all TECCs and verify the set temperatures.

	Actors
	Operator, DCS app

	Trigger
	DCS app entering monitoring stage.

	Preconditions
	All FEBs in the operational mask are verified to have the latest firmware version.

	Post-conditions
	The APD set temperature is verified. The APDs are ready for DAQ operations.

	Description
	1. Broadcast the TECC enable command to all DCM/FEBs.
2. Read for each FEB channel the TECC status register (! New feature!) to verify that the TECC is enabled.
3. Read from the configuration file the temperature for each FEB channel.
4. Broadcast to all DCM/FEBs the set command with the target temperature value.
5. Start a loop for checking the drive current and verify the temperature set:
5.1. Request for the TECC drive current and the TECC temperature values to be digitized.
5.2. Read both types of the digitized values from the registers.
5.3. If the drive current value is not zero
5.3.1. Check if it is different more than 5% from last read
5.3.2. If it is then exit the loop because the current stabilized.
5.4. If the drive current value is zero
5.4.1. Check if the temperature read-back is 5%from the nominal (from the set command).
5.4.2. If it is, then exit the loop because the drive does not need to run at this moment.
5.5. Else repeat the loop and remember the index count.
6. Archive locally the configuration label, last value of the drive current, and the TECC read-back temperatures of the FEBs.
7. Transmit to the Archiver the configuration state of the detector, the read-back of the set temperature, and the read-back of the drive current as initial conditions of a Run start.
8. Send a message to DAQ that the detector is read for data taking.
9. Go into “steady state monitoring mode”.

	Nonstandard Flow
	The current is zero +5% after 5 repeats of the loop with the temperature read-back more than 5% of the set-command value. Action: send message to the main DCS app that the TECC on that FEB may be inoperable.

	Comments
	It is a shifter's responsibility to set the detector to the proper configuration via DCS. These would likely be simply-defined states, like I said above, cold, warm, high gain, low gain, standard, ... DCS would have to build, or have something build the actual setpoints for each configuration from the information in the database.
On the error status: There is also a chance that the APD is colder than the set temperature. It may happen if a previous run was a “colder” configuration and the APDs have not warmed up yet. It is the shifter’s responsibility to recognize this (with a reminder prompt by the error message) and just wait few minutes until running the case again.
The 5% number is probably bigger than needed. it is configurable and will be determined from operational experience.
From the 4/14/11 DCS meeting.

[bookmark: _Toc303185200]Alarm Handling
When a readback action returns “alarm-able” (out-of-bounds) values of process variables the DCS application will engage the Alarm handling facility to present the instance to Shift operators for judgment of severity and/or immediate action, report the event to DAQ for automatic response (g.e. stop data taking). Also it will engage the Archiver facility to store the alarm for the later judgment offline.

[bookmark: _Toc303185201]Annunciation.

[bookmark: _Toc300268923]An internal logic could be designed to respond to any alarm-able value readback but the most efficient judgment of the severity and the proper response is the shift operators. Therefore, the Alarm handling facility will also send message with the info (value, address) of the alarm to an annunciation panel on the Visualization facility. Therefore for this case the main requirement is:
a) [bookmark: _Toc300268924]The Alarm facility must have a filter-mechanism to chose if an alarm event is “reasonable” to be annunciated to the shift operator.
b) [bookmark: _Toc300268925]The DCS application must be able to receive from the Alarm facility messages that confirm or suggest that an alarm event be annunciated to the shift

	Task
	Annunciate alarm events to shifters

	Goal
	Annunciate alarm events to shifters

	Actors
	Alarm Handling facility

	Trigger
	Alarm has received an out-of-bounds event for a process variable

	Preconditions
	The Detector is successfully configured.
The DCS application is in monitoring state.

	Post-conditions
	n/a.

	Description
	1. The DCS application receives an alarm-able value for a process variable.
2. The DCS application engages the Alarmer.
3. The Alarmer performs automatic checks of the alarm state of other relevant process variables as specified in the alarm table (g.e. section 4.2 Table A.2).
4. It then compares the name of the process variable to the filter of reportable names.
4.1. If it is on the list
4.1.1. A message is sent to the DCS application that this is a reportable alarm.
4.1.2. The DCS application sends a message to the Visualization facility with the alarm information (value, address, auto-check results).
4.1.3. A visual/auditory signal appears in the relevant panel and a message with the auto-check results and the prescribed suggested troubleshooting sequence (TableA.2).
4.2. If it is not on the list
4.2.1. A message is sent to the DCS application that this is an archive-able-only alarm.
4.2.2. There is no action from the DCS application towards the Visualization facility.
4.3. The DCS application sends a message to the Logging facility with the alarm information.

	Nonstandard Flow
	n/a

	Comments
	n/a

[bookmark: _Toc303185202]Send message to DAQ.

[bookmark: _Toc300268927]Well defined error states of the system that are known to cause imminent corruption/disruption of data/data-taking require a fast response. Some cases warrant bypassing the shift operator monitoring an annunciation panel on the screen before responding to the alarm. For such cases a message directly to DAQ is best. Therefore for this case the main requirement is:
a) [bookmark: _Toc300268928]The Alarm facility must have a way to send a message to the DAQ.
b) [bookmark: _Toc300268929]The Alarm facility must have a filter-mechanism to chose if an alarm event is to be reported directly to DAQ.

	Task
	Report alarm events to DAQ.

	Goal
	Report alarm events to DAQ.

	Actors
	Alarm Handling facility

	Trigger
	Alarm has received an out-of-bounds event for a process variable

	Preconditions
	Alarmer has received an out-of-bounds event.
A filter mechanism exists.

	Post-conditions
	The detector control has gone over to DAQ.

	Description
	1. The DCS application receives an alarm-able value for a process variable.
2. The DCS application engages the Alarmer.
3. The Alarmer performs automatic checks of the alarm state of other relevant process variables as specified in the alarm table (g.e. section 4.2,Table A.2).
4. It then compares the info of the event to the list of auto-response events.
4.1. If it is on the list
4.1.1. The Alarm sends a message to the DAQ facility with the alarm information (or a simple message of “Stop Run”.
4.1.2. The DCS continues the actions of the “Annunciation” use case.
4.2. If it is not on the list
4.2.1. The DCS continues the actions of the “Annunciation” use case.

	Nonstandard Flow
	n/a

	Comments
	Here the term “event” means more than a single error response from a single process variable. It may include a combination of error responses of specific process as long as they are enumerated in the “auto-response” event list of the Alarmer filter.

[bookmark: _Toc303185203]Logging (long term).
One or the goals of DCS monitoring is to preserve the state information of the detector at certain frequency. Both troubleshooting procedures and the offline need to review these histories and put the data collected in the context/corelation of the machine or environment conditions at the time. Therefore the main requirement for this case is for the DCS application to have the means to send the state and alarm information to the database at the required frequency.

	Task
	Archive the DCS data

	Goal
	Store the detector states at some frequency in a persistent format to make possible the analysis at a later time.

	Actors
	DCS application

	Trigger
	DCS app has collected detector state data.

	Preconditions
	DCS app has started collecting detector state data.

	Post-conditions
	n/a

	Description
	1. The DCS application polls all the subsystems for their state information.
2. It checks the rate of archiving for each process variable.
3. It sends a message to the persistent storage with the info to be archived.

	Nonstandard Flow
	n/a

	Comments
	n/a

[bookmark: _Toc303185204]Visualization
The name of this use case is a generic term that here also includes the capability of sending controlling commands back to the detector. Here it represents the full User Interface (a.k.a. GUI or OPI) facility of the DCS suite of applications. The requirements for this facility are listed in categories. The general requirements are:
[bookmark: _Toc303185205]Partitioning.
a) The views (aka panels, screens, pages) will be arranged in a tree hierarchy by the grouping scheme prevalent in NOvA (detector-> di-block-> subsystem-> process variable).
b) Each subsystem must be on screen alone or (for smaller ones) grouped.
c) The views will be created at run time from a view template for the level and the address acquired from the field that is chosen in the parent panel.
d) Each view must be duplicate for shifter and expert with appropriate level of information detail.
[bookmark: _Toc303185206]Annunciation for the shifters.
a) Readability: the views must clearly present the state info of the detector so that the shifter can only periodically glance at one screen and verify the state.
b) The info presented must be clearly labeled as “within normal operational limits”, “out-of-bounds value” and “non-alarm-able” section.
c) The alarms that are presented to the shifter will be accompanied with a suggested response from the Alarmer table.
[bookmark: _Toc303185207]Set-command sections for the shifters.
a) The commands the shifters are allowed to issue (defined by DAQ) will be clearly marked in a clearly labeled part of the area of the view page.
b) Clear label on them and online help as to what the command engagement action corresponds must be provided.
c) Verification action: an extra step verifying that the requested action is the shifter’s intention will be provided before the command-message is transmitted from the Vizualization facility to the DCS application.

[bookmark: _Toc303185208]Expert views and expert controls.
a) In each shifter view page there will be a clearly defined mechanism that opens an expert view page.
b) The expert view page will be created at run time from a template and taking the level and address info from the parent panel.
c) In the expert view all possible process variable for this level or sub-system will be available in any readable density without the readability requirement of the same shifter page.
d) In the expert page all possible set commands for this level or sub-system will be available in any readable density.
e) The verification action must be present as well.

[bookmark: _Toc303185209]Illustration of monitoring use case.

	Task
	Monitoring on the GUI.

	Goal
	Present the monitored processes on the GUI

	Actors
	DCS application, Visualization

	Trigger
	The DCS application has started polling for info from the various processes.

	Preconditions
	There are state info in the DCS application.

	Post-conditions
	n/a

	Description
	a) Create the view that the shifter/expert has requested.
b) Request from the database the latest values that are relevant to the level and addresses of the top view that is open.
c) If the time for update has past or the shifter/expert requests update of the fields in the view send the request to the database again.

	Nonstandard Flow
	n/a

	Comments
	 The time of automatic update of the fileds may be defined by the frequency of archiving the most common process variable type. In NDOS this is the APD temperatures and it is 30 sec.

[bookmark: _Toc303185210]Illustration of control use case.

	Task
	Control from the GUI .

	Goal
	Set values to processes or start procedures from the GUI.

	Actors
	DCS application, Visualization, shifter/expert.

	Trigger
	An alarm warrants a remedy or the DAQ requires engaging a procedure(g.e “Start-up”).

	Preconditions
	All the hardware subsystems involved in the use case are turned on.

	Post-conditions
	n/a

	Description
	a) Create the view that the shifter/expert has requested.
b) Request from the database the latest values that are relevant to the level and addresses of the top view that is open.
c) The shifter/expert engages the mechanism that transmits the command to the subsystem.
d) The GUI asks for a verification of the action.
e) The shifter/expert verifies.
f) The Visualization facility sends a message to the DCS application with the command info (address, value).
g) The DCS application transmits the command info to the appropriate CMI on the relevant node/subsystem.

	Nonstandard Flow
	n/a

	Comments
	As the “set value” control commands to the subsystems do not remain active until a global action but rather perform the “set” action immediately it is advisable to keep the verification action at the expert pages as well even though they may become cumbersome for repeated tasks.

[bookmark: _Toc303185211]Non-Functional Requirements

[bookmark: _Toc228775801][bookmark: _Toc303185212]Performance Requirements
The following performance requirements must be met by the DCS app monitoring system.
	ID
	Requirement

	P00
	The DCS applications must not interfere with the DAQ.

	P01
	The DCS applications must not depend on anything from the DAQ running.

	P02
	The DCS application (and all parts of the suite) must be free for use outside the FNAL.

	P03
	The DCS application (and all parts of the suite) must have access permission from sites outside the FNAL.

[bookmark: _Toc228775802]
[bookmark: _Toc303185213]External Constraints
The following general requirements must be supported by the DCS application suite.
	ID
	Requirement

	E00
	Each CMI software must able to compile on the computer architecture it is intended. Currently there are the PPC Linux running on the DCMs, the Linux 2.6 that runs on the monitoring PCs and MS-Windows for use on nodes with specific hardware interface software.

	E01
	The DCS application communication must be compatible with FNAL network security policies

	
	

1. [bookmark: _Toc303185214]Appendices
0. [bookmark: _Toc303185215]Appendix 1. The main parameters monitored from the FEBs.

Table A.1 the full list of 57 registers accessible from the DCMs with the R/W attributes of each and indicative values for the frequency of monitoring. The registers that are to be read out in this short term system ar the 6 with a “V” check mark in the last column called “short_term_monitor”.
Legend: 1/st = once within this stage of operation.
1Hz = 1 per sec during this stage
<empty cell> = do not monitor during theis stage.

[bookmark: _Toc303185216]Appendix 2. Example of alarm states in the DCS.

table A.2 An example of Alarm table with some of the alarm states to which the DCS will respond. The “tbd” stands for action to be determined from experience on the NDOS such as searching the run data base and the shift elogs.
image2.wmf
Fire &Flood

Sys Admin of

Computer

Hardware.

Doors & Access security

WiFi

, Net, GPS

operations

AC & Heat

Room control

image3.emf
Reg_Addr

Reg_name read_reg set_reg

prestart-

checks

DAQ-

start-up

pre-Run-

start-

checks

Steady-

state-

checks

Alarm

respo

nse

short_term

_monitor

 0x0000

 timing_control

 0x0010

 time_preset_lo

R W

 0x0011

 time_preset_hi

R W

 0x0012

 reserved

 0x0013

 reserved

 0x0101

 command

W

 0x0102

 status

R 1/st 1/st 1/st V

 0x0103

 error_flags

R

 0x0104

 firmware_version

R 1/st 1/st 1/st V

 0x0120

 temperature

R 1Hz V

 0x0121

 temp_time_stamp_lo

R

 0x0122

 temp_time_stamp_hi

R

 0x1000

 DAQ_Mode

R W

 0x1001

 Channel_Enable_hi

R W

 0x1002

 Channel_Enable_lo

R W

 0x1010

 Timing_Marker_Packet_Rate

R W

 0x1020

 High_Voltage_Adjust

R W 1/st 1Hz V

 0x1030

 Data_Regulator

R W

 0x2000

 Trigger_thres_Chan-0

R W

 0x2001

 Trigger_thres_Chan-1

R W

 0x2002

 Trigger_thres_Chan-2

R W

 0x2003

 Trigger_thres_Chan-3

R W

 0x2004

 Trigger_thres_Chan-4

R W

 0x2005

 Trigger_thres_Chan-5

R W

 0x2006

 Trigger_thres_Chan-6

R W

 0x2007

 Trigger_thres_Chan-7

R W

 0x2008

 Trigger_thres_Chan-8

R W

 0x2009

 Trigger_thres_Chan-9

R W

 0x200A

 Trigger_thres_Chan-10

R W

 0x200B

 Trigger_thres_Chan-11

R W

 0x200C

 Trigger_thres_Chan-12

R W

 0x200D

 Trigger_thres_Chan-13

R W

 0x200E

 Trigger_thres_Chan-14

R W

 0x200F

 Trigger_thres_Chan-15

R W

 0x2010

 Trigger_thres_Chan-16

R W

 0x2011

 Trigger_thres_Chan-17

R W

 0x2012

 Trigger_thres_Chan-18

R W

 0x2013

 Trigger_thres_Chan-19

R W

 0x2014

 Trigger_thres_Chan-20

R W

 0x2015

 Trigger_thres_Chan-21

R W

 0x2016

 Trigger_thres_Chan-22

R W

 0x2017

 Trigger_thres_Chan-23

R W

 0x2018

 Trigger_thres_Chan-24

R W

 0x2019

 Trigger_thres_Chan-25

R W

 0x201A

 Trigger_thres_Chan-26

R W

 0x201B

 Trigger_thres_Chan-27

R W

 0x201C

 Trigger_thres_Chan-28

R W

 0x201D

 Trigger_thres_Chan-29

R W

 0x201E

 Trigger_thres_Chan-30

R W

 0x201F

 Trigger_thres_Chan-31

R W

 0x5010

 Setpoint

R W

 0x5020

 Drive_Current

R 1/st 1Hz V

 0x5021

 Drive_Current_time_lo

R

 0x5022

 Drive-Current_time_hi

R

 0x5030

 Temp_Monitor

R 1Hz V

 0x5031

 Temp_Monitor_time_lo

R

 0x5032

 Temp_Monitor_time_hi

R

register parameters OPERATIONAL STAGES

Microsoft_Excel_Sheet1.xlsx
mon_FEB_registers

		register parameters								OPERATIONAL STAGES

		Reg_Addr		Reg_name		read_reg		set_reg		prestart-checks 		DAQ-start-up		pre-Run-start-checks		Steady-state-checks		Alarm response		short_term_monitor

		 0x0000		 timing_control

		 0x0010		 time_preset_lo 		R 		W

		 0x0011		 time_preset_hi 		R		W

		 0x0012		 reserved

		 0x0013		 reserved

		 0x0101		 command 				W

		 0x0102		 status 		R				1/st				1/st				1/st		V

		 0x0103		 error_flags 		R

		 0x0104		 firmware_version 		R				1/st				1/st				1/st		V

		 0x0120		 temperature 		R										1Hz				V

		 0x0121		 temp_time_stamp_lo 		R

		 0x0122		 temp_time_stamp_hi 		R

		 0x1000		 DAQ_Mode 		R		W

		 0x1001		 Channel_Enable_hi 		R		W

		 0x1002		 Channel_Enable_lo 		R		W

		 0x1010		 Timing_Marker_Packet_Rate 		R		W

		 0x1020		 High_Voltage_Adjust 		R		W						1/st		1Hz				V

		 0x1030		 Data_Regulator 		R		W

		 0x2000		 Trigger_thres_Chan-0 		R		W

		 0x2001		 Trigger_thres_Chan-1 		R		W

		 0x2002		 Trigger_thres_Chan-2 		R		W

		 0x2003		 Trigger_thres_Chan-3 		R		W

		 0x2004		 Trigger_thres_Chan-4 		R		W

		 0x2005		 Trigger_thres_Chan-5 		R		W

		 0x2006		 Trigger_thres_Chan-6 		R		W

		 0x2007		 Trigger_thres_Chan-7 		R		W

		 0x2008		 Trigger_thres_Chan-8 		R		W

		 0x2009		 Trigger_thres_Chan-9 		R		W

		 0x200A		 Trigger_thres_Chan-10 		R		W

		 0x200B		 Trigger_thres_Chan-11 		R		W

		 0x200C		 Trigger_thres_Chan-12 		R		W

		 0x200D		 Trigger_thres_Chan-13 		R		W

		 0x200E		 Trigger_thres_Chan-14 		R		W

		 0x200F		 Trigger_thres_Chan-15 		R		W

		 0x2010		 Trigger_thres_Chan-16 		R		W

		 0x2011		 Trigger_thres_Chan-17 		R		W

		 0x2012		 Trigger_thres_Chan-18 		R		W

		 0x2013		 Trigger_thres_Chan-19 		R		W

		 0x2014		 Trigger_thres_Chan-20 		R		W

		 0x2015		 Trigger_thres_Chan-21 		R		W

		 0x2016		 Trigger_thres_Chan-22 		R		W

		 0x2017		 Trigger_thres_Chan-23 		R		W

		 0x2018		 Trigger_thres_Chan-24 		R		W

		 0x2019		 Trigger_thres_Chan-25 		R		W

		 0x201A		 Trigger_thres_Chan-26 		R		W

		 0x201B		 Trigger_thres_Chan-27 		R		W

		 0x201C		 Trigger_thres_Chan-28 		R		W

		 0x201D		 Trigger_thres_Chan-29 		R		W

		 0x201E		 Trigger_thres_Chan-30 		R		W

		 0x201F		 Trigger_thres_Chan-31 		R		W

		 0x5010		 Setpoint 		R		W

		 0x5020		 Drive_Current 		R								1/st		1Hz				V

		 0x5021		 Drive_Current_time_lo 		R

		 0x5022		 Drive-Current_time_hi 		R

		 0x5030		 Temp_Monitor 		R										1Hz				V

		 0x5031		 Temp_Monitor_time_lo 		R

		 0x5032		 Temp_Monitor_time_hi 		R

set_FEB_registers

		register parameters								OPERATIONAL STAGES

		Reg_Addr		Reg_name		read_reg		set_reg		prestart-checks 		DAQ-start-up		pre-Run-start-checks		Steady-state-checks		Alarm response		short_term_monitor

		 0x0000		 timing_control

		 0x0010		 time_preset_lo 		R 		W

		 0x0011		 time_preset_hi 		R		W

		 0x0012		 reserved

		 0x0013		 reserved

		 0x0101		 command 				W

		 0x0102		 status 		R				1/st				1/st				1/st		V

		 0x0103		 error_flags 		R

		 0x0104		 firmware_version 		R				1/st				1/st				1/st		V

		 0x0120		 temperature 		R										1Hz				V

		 0x0121		 temp_time_stamp_lo 		R

		 0x0122		 temp_time_stamp_hi 		R

		 0x1000		 DAQ_Mode 		R		W

		 0x1001		 Channel_Enable_hi 		R		W

		 0x1002		 Channel_Enable_lo 		R		W

		 0x1010		 Timing_Marker_Packet_Rate 		R		W

		 0x1020		 High_Voltage_Adjust 		R		W						1/st		1Hz				V

		 0x1030		 Data_Regulator 		R		W

		 0x2000		 Trigger_thres_Chan-0 		R		W

		 0x2001		 Trigger_thres_Chan-1 		R		W

		 0x2002		 Trigger_thres_Chan-2 		R		W

		 0x2003		 Trigger_thres_Chan-3 		R		W

		 0x2004		 Trigger_thres_Chan-4 		R		W

		 0x2005		 Trigger_thres_Chan-5 		R		W

		 0x2006		 Trigger_thres_Chan-6 		R		W

		 0x2007		 Trigger_thres_Chan-7 		R		W

		 0x2008		 Trigger_thres_Chan-8 		R		W

		 0x2009		 Trigger_thres_Chan-9 		R		W

		 0x200A		 Trigger_thres_Chan-10 		R		W

		 0x200B		 Trigger_thres_Chan-11 		R		W

		 0x200C		 Trigger_thres_Chan-12 		R		W

		 0x200D		 Trigger_thres_Chan-13 		R		W

		 0x200E		 Trigger_thres_Chan-14 		R		W

		 0x200F		 Trigger_thres_Chan-15 		R		W

		 0x2010		 Trigger_thres_Chan-16 		R		W

		 0x2011		 Trigger_thres_Chan-17 		R		W

		 0x2012		 Trigger_thres_Chan-18 		R		W

		 0x2013		 Trigger_thres_Chan-19 		R		W

		 0x2014		 Trigger_thres_Chan-20 		R		W

		 0x2015		 Trigger_thres_Chan-21 		R		W

		 0x2016		 Trigger_thres_Chan-22 		R		W

		 0x2017		 Trigger_thres_Chan-23 		R		W

		 0x2018		 Trigger_thres_Chan-24 		R		W

		 0x2019		 Trigger_thres_Chan-25 		R		W

		 0x201A		 Trigger_thres_Chan-26 		R		W

		 0x201B		 Trigger_thres_Chan-27 		R		W

		 0x201C		 Trigger_thres_Chan-28 		R		W

		 0x201D		 Trigger_thres_Chan-29 		R		W

		 0x201E		 Trigger_thres_Chan-30 		R		W

		 0x201F		 Trigger_thres_Chan-31 		R		W

		 0x5010		 Setpoint 		R		W

		 0x5020		 Drive_Current 		R								1/st		1Hz				V

		 0x5021		 Drive_Current_time_lo 		R

		 0x5022		 Drive-Current_time_hi 		R

		 0x5030		 Temp_Monitor 		R										1Hz				V

		 0x5031		 Temp_Monitor_time_lo 		R

		 0x5032		 Temp_Monitor_time_hi 		R

image4.emf
state

parameter

name alarm name annunciation

auto action by

Alarmer troubleshooting

warm runing APD Temp too_hi red cell tbd tbd

too_low red cell tbd tbd

cooled-run APD Temp too_hi red cell tbd tbd

too_low red cell tbd tbd

cooled-run TECC Drive at0 % red cell tbd tbd

at 100% red cell tbd tbd

warm-run TECC Drive non_0% red cell tbd tbd

warm-run FEB Temp hi red cell tbd tbd

low red cell tbd tbd

cooled-run FEB Temp hi red cell tbd tbd

low red cell tbd tbd

any PSHV over-shoot

red "Status

Indicator" tbd tbd

 drop-low

red "Status

Indicator" tbd tbd

any PSLV-24V over-shoot

red "Status

Indicator" tbd tbd

drop-low

red "Status

Indicator" tbd tbd

any PSLV-3.3V over-shoot

red "Status

Indicator" tbd tbd

drop-low

red "Status

Indicator" tbd tbd

any Envirmental temp tbd tbd tbd

humidity tbd tbd tbd

any water colling temperature tbd tbd tbd

pressure tbd tbd tbd

any Rack protection voltage

red "Status

Indicator" tbd tbd

smoke

red "Status

Indicator" tbd tbd

overheat

red "Status

Indicator" tbd tbd

Microsoft_Excel_Sheet2.xlsx
Sheet1

		state		parameter name 		alarm name		annunciation 		auto action by Alarmer		troubleshooting

		warm runing		APD Temp		too_hi		red cell		tbd		tbd

						too_low		red cell		tbd		tbd

		cooled-run		APD Temp		too_hi		red cell		tbd		tbd

						too_low		red cell		tbd		tbd

		cooled-run		TECC Drive		at0 %		red cell		tbd		tbd

						at 100%		red cell		tbd		tbd

		warm-run		TECC Drive		non_0%		red cell		tbd		tbd

		warm-run		FEB Temp		hi		red cell		tbd		tbd

						low		red cell		tbd		tbd

		cooled-run		FEB Temp		hi		red cell		tbd		tbd

						low		red cell		tbd		tbd

		any		PSHV		over-shoot		red "Status Indicator"		tbd		tbd

				 		drop-low		red "Status Indicator"		tbd		tbd

		any		PSLV-24V		over-shoot		red "Status Indicator"		tbd		tbd

						drop-low		red "Status Indicator"		tbd		tbd

		any		PSLV-3.3V		over-shoot		red "Status Indicator"		tbd		tbd

						drop-low		red "Status Indicator"		tbd		tbd

		any		Envirmental		temp		tbd		tbd		tbd

						humidity		tbd		tbd		tbd

		any		water colling		temperature		tbd		tbd		tbd

						pressure 		tbd		tbd		tbd

		any		Rack protection		voltage		red "Status Indicator"		tbd		tbd

						smoke		red "Status Indicator"		tbd		tbd

						overheat		red "Status Indicator"		tbd		tbd

Sheet2

Sheet3

image1.wmf
Communication

Framework

Reading

Parameters

Set

Parameters

Logging

Alarm

handling

NOVA DCS Software Functional Requirements.

[

