CD/SCF/DMS/DMD

[bookmark: _Toc265790727]Enstore SFA Migration Phase 2 Design Document
	

Alex Kulyavtsev

6/25/14
Version 1.0

[bookmark: _Toc265790728]Table of Contents
Enstore SFA Migration Phase 2 Design Document	1
Table of Contents	2
Introduction	3
Background information	3
Migration Operation	3
SFA operation	4
Hardware	4
Proposed Design	4
Commad Line Arguments	4
Migration of Tape	4
Migration of Individual Packaged Files from Command line	5
Keep Track of Space usage on the Local Disk	5
Writing Files to Tape	5
Metadata Swapping	5
After the Write to Tape	5
File Restore	6
Helper functions	6
Final Scan	6
Notable Features and Side Effects	7
Changes to SFA	7
Change Name for Migrated Package in SFA	7
Flush File Family from SFA Write Cache.	7
Changes in Tape Migration Procedures	7
Setup Proper File Aggregation Policy	7
Migration Validation	7
Acronyms	7
References	8
Revision History	8
Enstore SFA Migration Phase 2 Design Document	1
Table of Contents	2
Introduction	3
Background information	3
Migration Operation	3
SFA operation	4
Hardware	4
Proposed Design	4
Commad Line Arguments	4
File Reader	4
Migration of tape	4
Migration of Individual Packaged Files	5
Scheduler	5
File Writer	5
SFA	5
Change name for migrated package in SFA.	5
Metadata Swapping	6
Scan	6
File Restore	6
Notable Features and Side Effects	6
Changes in Tape Migration Procedures	6
Setup Proper File Aggregation Policy	6
Migration Validation	6
Acronyms	6
References	7
Revision History	7

[bookmark: _Toc265790729]Introduction

Small File Aggregation feature (SFA) of Enstore tape system provides transparent aggregation of small files into larger containers (packages) written to tapes. Migration and Duplication features of Enstore provide capabilities to migrate data from old generation of tapes to the newer technology tapes or create duplicate (mirror) copy of the files in different tape library for better reliability.
The migration and duplication in the initial implementation of SFA is performed by migration and duplication of physical files on tape ‘as is’ and proper modification of file metadata in enstore DB. This allows migrating file packages to new tape technology generation. We have large amounts of data written to tapes (LTO4) before SFA was introduced. Some datasets have “small” files yet unpackaged that need to be packaged. For the files written with and packaged by SFA the new tape technologies may offer better performance if the physical file (package) written to the tape is larger. To enable file repackaging in SFA migration process shall unwind packages and write them to the new tape using new policy.
The phase two of SFA Migration and Duplication will allow to package small files and/or to repackage packaged SFA files according policy during migration process.
We do not change duplication to repackage files: duplicated files stay packaged the same way both on original and copy tape.
[bookmark: _Toc265790730]Background information
[bookmark: _Toc265790731]Migration Operation
In current implementation Migration process reads files from source tape(s) and accumulates files on migration spool area on local disk. There are several (typically three) reader threads to provide parallelism in accessing and checking file metadata while some other process is reading data from tape. The other few (usually three) threads write data to tape from disk spool area, one actually writes ant the other two performing metadata operations or waiting for IO. The threads communicate trough python queues. All migration activitiesy runs on the same node (migration station). MiFew migration stations operate in parallel working on different set of tapes. 	Comment by Alexander Moibenko: activities	Comment by Alexander Moibenko: run	Comment by Alexander Moibenko: remove
TThe migration process operates ‘physical’ files on tape: regular unpackaged files and packages. Migration process automatically identifies if the file is a package. In this case itcase it creates proper metadata in enstore DB tables for packaged files on new tape. File Clerk performs swap metadata swap operation at once for all files in the package. This metadata ‘swapping’ happens during tape after new file is successfully written to the tape. ‘scan’ step. The ‘restore’ operation on migrated volume by administrator command may decide to reverses the result of migration by undeleting migrated files and by swapping bfids referenced in pnfs back toand perform ‘restore’ operation on migrated file. File metadata are migrated filesswapped back. The log of ongoing migration operation and history are kept in DB.	Comment by Alexander Moibenko: regular	Comment by Alexander Moibenko: swap these	Comment by Alexander Moibenko: why ‘’ ?	Comment by Alex Kulyavtsev: Please provide more detail, I do not understand what it the issue.	Comment by Alexander Moibenko: why ‘’ ?	Comment by Alex Kulyavtsev: Please provide more details regarding the issue
[bookmark: _Toc265790732]SFA operation
Files are written to SFA using encp as usual. If proper conditions are met (“enable-redirection” flag set, file satisfies SFA policy), the file will be written by ‘disk mover’ to the disk on SFA system, then packaged to tar files and the tar files are written to the tape. When reading pfiles packaged files with encp, the container file is read to SFA disk, unpackaged and the small file is delivered through disk moverthe small file is delivered by disk mover when encp is called. and encp.	Comment by Alexander Moibenko: ‘ are not needed	Comment by Alexander Moibenko: is ..	Comment by Alexander Moibenko: remove	Comment by Alexander Moibenko: by disk mover
[bookmark: _Toc265790733]Hardware
Few most modernrecent migration stations have Intel X3360 @2.83GHz 4 core CPU, 8GB memory, 10GbE connection. Migration spool area resides on Nexsan appliance formatted with two 4.5 TB4.5 TB arrays connectedarrays connected through two 8Gbit FC. There is also 367GB SSD currently used as migration spool area.
The current generation of tapes allows to transfertransferring data at speeds 240 MB/sec (T10KC, ~5 TB) or 252or 252 MB/sec (T10KD, 8 TB). We use IO rate=70 MB/sec to estimate “typical” IO rate in enstore to/from LTO-4 800 GB tape.
[bookmark: _Toc265790734]Proposed Design
Considering our current hardware configuration we suggest to unpack files to the local migration spool disk then write files to enstore through SFA facility.

[bookmark: _Toc265790735]Commad Line Arguments
Add command line arguments:
--sfa_repackage	enable file repackaging.
Default: migration by package (no repackaging).
File Reader
[bookmark: _Toc265790736]Migration of Ttape
TFor unpackaged tapes the files on tape are read as usual from unpackaged tapes to the local migration spool area.
 Changes of the code are required when reading tapes containing packaged files when doing migration with repackaging.
Option A) During the tape migration offor files written with SFA files and packaged the function migrate_volume()reader will access the full list of files on tape to include packaged files (instead of just physical files) and read files through SFA which will unpack files and deliver them through encp. This is the simplest change but
uUnpacking full package files on SFA servers can create unneeded load on SFA servers, flash file sfrom SFA caches and it can be slowslow, as the chain of communication happens to pull small files through SFA.

To provide Option B) read speed optimization and reduce per-file delays we may unwind packages on local disk on migration station. In this case migrate_volume() To speedup file reads we will provide list ofoperate physical files on tape as it does now only. A and fter the file is read in by copy_files()and is identified as a full package file, then we will to the local disk and unwind (e.g. untar) the package to the local migration spool disk. To increase tape IO speed, package files canwill be read to local SSD drive if unpacking Migration Sspool is configured so. The package files will be read in separate subdirectory in Migration Spool, and symbolicoft link can be set to the directory on SSD.

The option (B) is preferable.
The further optimization will be to create named pipe and read SFA package with encp to the named pipe. The named pipe is needed to trick encp as it requires destination to be a file. The unpacker (untar) will read tar filefiles from the named pipe and unpack archive. This eliminates two disk IO operations out of three: all unpackaging done on flight in memory and only resultant small files are written to the disk. It is possible to select only undeleteded files by generating list of undeleted files in package file.list and then pointing to it by specifyusing tar argument “--files-from file.list” or all files if all files in the package need to be migrated. The encp need to be modified to do extra check whether the destination file is a named pipe. Now encp fails if the destination file exists.	Comment by Alexander Moibenko: I do not see the optimization in using pipe, “—files-from” is tar option, so what is the purpose of pipe?	Comment by Alex Kulyavtsev: Changed the text, I hope it is more clear.
[bookmark: _Toc265790737]Migration of Individual Packaged Files from Command line
It is assumed that migration of the single file by specifying BFID or file name on command line or the file with the list of files is used to “fix” individual files and is not used for large dataset migrations. The reading (and unpacking) of individual packaged files to the local disk is performed trough SFA facility to migration spool area.
[bookmark: _Toc265790738]Keep Track of Space usage on theSchedule Local Diskr
The present implementation of migration uses few (default three) read threads and few (default three) write threads to overlap metadata checks and data IO. There is a ‘feature’ in migration implementation that migration codeIt does not check for available disk space on migration spool. We observed situation when files were not removed from spool after the crash and the reader started to fail due to the lack of available space.. The individual files were failed with error and reader rapidly wentgoes through the full list.	Comment by Alexander Moibenko: Does not sound good	Comment by Alex Kulyavtsev: I’m not sure what changes to the text to be made in response to this comment. The situation itself is a bug in migration, that is why I address it here.
	This issue will be exaggerated in migration with unpackaging as we may want to accumulate some amount of files before writing them into SFA to optimize writes and minimize tape mounts.
	The reader function copy_files() will be modified to check if space is available on local disk and wait if needed before scheduling read encp transferto detect no space left on device IO errors, and in the first place to check if disk space is available and wait if needed before scheduling read/unpack transfer. When spaceIt is released in migration spool after files written to tape and shall account when files are deleted, the suspended read transfers will resume. in the spool. 	Comment by Alexander Moibenko: The idea is to check if the space is available and stop suspend reads automatically, I assume. Please re-word.

[bookmark: _Toc265790739]File Writing Files to Tapeer
Add flag to encp ‘—enable-redirection’ into arguments of encp call in function write_file()when needed to write data through SFA when migrating files with repackaging.. We may keep flag –enable-redirection for all files in repackaging run if LMD is modified to check if file is a package and always redirect packages to the tape library.
Implement ‘Flush’ request in SFA to stimulate pushing files to the tape (instead of waiting for timeout expiration).	Comment by Alexander Moibenko: What does this mean?	Comment by Alex Kulyavtsev: Provided more details in text in text, moved text to “Flush File Family in SFA” section below

SFA
Change name for migrated package in SFA.
SFA uses file family name as component of path for the package in /pnfs . Migrated files are written in with file family file_family-MIGRAITON thus the word “MIGRAITON” is present in the file path. SFA shall trim word MIGRATION at the end of file family name when creating the package.

[bookmark: _Toc265790740]Metadata Swapping
[bookmark: _Toc265790741]After the Write to TapeScan
The function sSwap_metadata() is method is called after file written to the destination tape to reassign properly cross references in the pnfs namespace and enstore File Clerk DB so pnfs points to the new bfid and enstore record points back to the original pnfs record.during the scan to swap metadata so pnfs pnfs id and enstore file clerk record pnfs for bfid of the migrated file are properly crossreferenced. Currently we use optimized call to File Clerk swap_package()to File Clerk to reassignswap all constituent files in the package to the new package at once. This will not work for migration with packaging/repackaging when anymore for as the original individual files are may be not packaged initially, or packaged source files canwill be repackaged to separatedifferent packages., The migration process with packaging/repackagingthus migration will swap metadata for each constituent file individually as we do in make_failed_copies(). 	Comment by Alexander Moibenko: Assign, re-assign	Comment by Alexander Moibenko: Does not sound correct	Comment by Alex Kulyavtsev: Text changed
We do not swap package metadata anymore for packages when repackaging files.
We may swap file metadata as soon as file written to SFA. We assume that SFA will take care of delivering file to tape. It is preferable to run scan as we do now as a separate step. The validation script (not part of the migration) can be amended to check the file was actually written to tape before declaring migration finished.	Comment by Alexander Moibenko: How about reverting changes in case of error? Needs more explanation.
[bookmark: _Toc265790742]File Restore
	The Restore operation reverses the result of metadata swappping thus it operates in opposite way. Migration will swap metadata in function restore_file() for constituent files individually instead of block operation in File Clerk for all files in the package.
[bookmark: _Toc265790743]Helper functions
Helper function __is_migrated_state() need to be modified to make functions calling it correctly report status of constituent file (is_migrated(), is_checked(), etc.). Specifically, it shall report correctly status of packaged file migrated with packaged based migration (dereference information for the parent package).
[bookmark: _Toc265790744]Final Scan
The final scan for the volume calls function scan_file() to read file from tape to /dev/null. At present we read physical files only (unpackaged and package files) but we do not attempt to unpack packages into individual files.
	Option a) Read package file only to /dev/null as we do now. For migration with repackaging we can miss situation when we cannot extract some file from package.
	Option b) Read each constituent file through SFA to /dev/null. This will put substantial load on SFA, but this will ensure the file can be unpackaged.
	Option c) Read package file on migration station and do listing of the package file with “tar tvf” to make sure all files are present in the package. Tar “seek” option shall not be used. The function scan_file() need to be modified to create named pipe, run tar command reading package from the named pipe and marking constituent files on destination package as scanned.
When files are written to the tape with SFA we need to make sure:
· All files are delivered to the tape before attempting the scan. This will need to implement SFA feature to flush file family from write cache.
· Files are read from the tape but not from some cache. This may require flushing files from read SFA cache.
Option (c) seems to be simpler reasonable compromise between (a) and (b).

[bookmark: _Toc265790745]Notestable Features and Side Effects
When writing files with SFA some files may be packaged and some files are not. Accumulating files in SFA cache takes some time and thus the order of the files on tape will change substantially for some files.
	Migration code is overdue for refactoring.
[bookmark: _Toc265790746]Changes to SFA
[bookmark: _Toc265790747]Change Name for Migrated Package in SFA
SFA uses file family name as component of path for the package in /pnfs . Migrated files are written using file family name for destination “file_family-MIGRATION” thus the word “MIGRAITON” is present in the file path. SFA shall trim the word MIGRATION at the end of file family name when creating the package.
[bookmark: _Toc265790748]Flush File Family from SFA Write Cache.
SFA may need to implement ‘flush files’ request to stimulate pushing files for specific file family to the tape without waiting for timeout expiration. We want to be sure before the final validation step that all files have reached the tape. When writing one or several tapes, the last batch of small files submitted for aggregation typically does not immediately trigger SFA policy to aggregate and write data to a tape by exceeding threshold for the file count or package size. Files stay in cache while SFA waits until timeout in policy expiries, for example 24 hours. When we do migration we know when we done with particular file family and we can trigger writing to the tape the last portion of files right away to avoid extra wait before validation step.
[bookmark: _Toc265790749]Changes in Tape Migration Procedures
[bookmark: _Toc265790750]Setup Proper File Aggregation Policy
Add to migration instructions: the proper SFA Policy Engine (PE) policy shall be set by administrators before starting migration to define extra policy for the file family file_family -MIGRAITION when migrating files in enstore file family file_family.
[bookmark: _Toc265790751]Migration Validation
SSA performs migration validation using custom scripts. The modification of these scripts is out of scope of this document.
[bookmark: _Toc265790752]Acronyms
SFA	Small File Aggregation. Enstore feature to write/read small files to tape with transparent packaging/unpackaging.
PE	SFA Policy Engine
[bookmark: _Toc265790753]References

[1] Enstore Technical Design Document,
 http://www-ccf.fnal.gov/enstore/design.html
[2] Fermilab DocDB, CS Document 5035-v2, Enstore Administrator's Guide
[3] Enstore Small File Aggregation HLD,
 https://cdcvs.fnal.gov/redmine/documents/58
[4] Fermilab DocDB, CS-‐doc-‐4698, Enstore Small File Aggregation Feature User Documentation

[bookmark: _Toc265790754]Revision History

	Document ID
	Version
	Date
	Author
	Comments

	
	1.0
	6/25/14
	Alex Kulyavtsev
	Initial revision

	
	
	
	
	

6

7
	

